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We report a systematic molecular dynamics study of the isochoric equilibration of hard-sphere fluids in their
metastable regime close to the glass transition. The thermalization process starts with the system prepared
in a nonequilibrium state with the desired final volume fraction ¢ for which we can obtain a well-defined
nonequilibrium static structure factor Sy(k;¢). The evolution of the «-relaxation time 7,(k) and long-time
self-diffusion coefficient D, as a function of the evolution time ¢, is then monitored for an array of volume
fractions. For a given waiting time the plot of 7, (k; ¢,1,,) as a function of ¢ exhibits two regimes corresponding to
samples that have fully equilibrated within this waiting time [¢ < ¢°)(¢,,)] and to samples for which equilibration
is not yet complete [¢ > ¢©)(t,,)]. The crossover volume fraction ¢“)(t,,) increases with #,, but seems to saturate to
a value ¢ = ¢©(r,, — 00) ~ 0.582. We also find that the waiting time 1°9(¢) required to equilibrate a system
grows faster than the corresponding equilibrium relaxation time, 7(¢) ~ 0.27[r§q(k;¢>)]"43, and that both
characteristic times increase strongly as ¢ approaches ¢@, thus suggesting that the measurement of equilibrium
properties at and above ¢@ is experimentally impossible.
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Above a certain size polydispersity, real and simulated hard-
sphere liquids fail to crystalize for volume fractions ¢ beyond
the freezing point ¢/) = 0.494 of the monodisperse system
[1-4]. As ¢ increases, the viscosity increases enormously, and
the metastable liquid eventually becomes an amorphous solid.
Mode-coupling theory (MCT) [5] predicts a transition from
metastable fluid to ideal nonergodic states, characterized by
the vanishing of the long-time self-diffusion coefficient D,
and the divergence of both the a-relaxation time 7, and the
viscosity 7. For the hard-sphere fluid the phenomenology pre-
dicted by MCT at ¢ ~ 0.52 has been essentially confirmed
by the experimental observations in hard-sphere colloidal
suspensions at ¢ggg, ~ 0.58 [6,7], although a number of intrin-
sic experimental uncertainties render the precise determination
of ¢ a topic of recurrent scientific discussion [4,6-10].

The recent work of Brambilla et al. [9,10], however,
seems to put the very experimental relevance of the divergent
scenario predicted by MCT under severe questioning. By
fitting their dynamic light-scattering data with the asymptotic
expression 7, (¢) ~ (¢ — ¢)77, traditionally associated with
MCT, these authors determined ¢ to be ¢ =0.590 +
0.005. If the ideal MCT picture were to be observed in
their experiments, the measured 7, (¢) should be infinite for
¢ > ¢'“). Instead, for the volume fraction range ¢@ < ¢ <
0.6, they report large but finite relaxation times, determined
through an extremely careful experimental procedure designed
to deal with artifacts caused, for example, by sample heating
or sedimentation, which allowed them to accurately monitor
the equilibration process of their samples [10]. Thus, the
most immediate interpretation is that these measurements
involve macroscopic states in which the system, instead of
falling out of equilibrium, remains ergodic but enters a new
dynamical regime where 7, increases with volume fraction
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according to a different functional form, namely, 7,(¢) ~
Too EXP[A(Po — ¢)~?]. This functional form had been proposed
by at least two prior theoretical works specifically formulated
for equilibrated, very dense, hard-sphere suspensions [11,12].

This interpretation, however, rests on the assumption that
all measurements reporting an apparent stationary behavior
indeed involve fully equilibrated systems. Recent molecular
dynamics simulations [13,14], however, suggest that this
assumption should not be taken for granted without further
discussion. For example, according to Ref. [13], the relaxation
time Thegero Of dynamic heterogeneities may grow like Thegero ~
7! as the glass transition is approached. Thus, if one has
to wait until “slow” regions become “fast” regions and vice
versa, one possibility that cannot be ruled out is that when the
equilibrium relaxation time 7,%(¢) indeed diverges, the system
will require a similarly divergent equilibration time ty\(¢),
thus blurring even the most accurate observation. Motivated in
part by these considerations, here we infentionally study the
effects on t,,(¢) of the incomplete equilibration of concentrated
hard-sphere systems close to the glass transition by means
of systematic computer simulations, in which some of the
intrinsic uncertainties of the experimental samples will be
absent.

As in Ref. [14], the basic simulation experiment consists of
monitoring the irreversible evolution of a hard-sphere system
initially prepared at a nonequilibrium state characterized
by a prescribed volume fraction ¢ and by a well-defined
nonequilibrium static structure factor Sy(k; ¢). The irreversible
evolution to equilibrium is then described in terms of the time-
evolving nonequilibrium static structure factor S;, (k;¢) and
self-intermediate scattering function (self-ISF) Fg(k,t,t,),
where 1, is the waiting (“evolution”) time after the system
was prepared. The naturally expected long-t,, asymptotic
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FIG. 1. (Color online) (a) Self-intermediate scattering function Fs(k,7;t,) of a polydisperse hard-sphere system (s = 0.0866) evaluated at
k = 7.1 at volume fraction ¢ = 0.575 as a function of the correlation time 7 for waiting times #,, = 10°, 10, ...,10°. The inset in (a) shows
the corresponding So(k; ¢) (solid line) and S®(k; ¢) (dashed line). (b) Simulation data of the «-relaxation time t,(k; ¢,1,,) as a function of 7,
at fixed volume fraction. The asterisks highlight the points (¢;1(¢), t5(k; ¢)).

limit of these properties is, of course, the equilibrium static
structure factor S%I(k; ¢) and self-ISF Fg'(k, 7). Our interest
is to determine the volume fractions for which equilibrium is
reached within a given waiting time t,,.

We use event-driven molecular dynamics to simulate the
evolution of N = 1000 particles in a volume V, with particle
diameters o evenly distributed betweeno (1 — w/2)ando (1 +
w/2), with & being the mean diameter. We consider the case
w = 0.3, corresponding to a polydispersity s, = w/+/12 =
0.0866. According to the results reported in [3], at this
polydispersity the system shows no evidence of crystallization
for any volume fraction ¢ = (;r/6)no3, where o3 is the third
moment of the size distribution and » is the total number
density n = N/ V. All the particles are assumed to have the
same mass M. The length, mass, and time units employed are
o, M,and o /M /kgT, respectively.

To produce the initial configurations, we used soft-particle
molecular dynamics to simulate the evolution of a set of
initially overlapping, randomly placed particles, with the
correct distribution of diameters, interacting through a short-
ranged repulsive soft (but increasingly harder) interaction and
in the presence of strong dissipation. For ¢ below the random
close-packing limit, this system evolves rapidly into a disor-
dered configuration with no overlaps. These nonthermalized
hard-sphere configurations are then given random velocities
generated by a Maxwell-Boltzmann distribution, with k5T set
as the energy unit. These configurations are then used as the
starting configurations for the event-driven simulation of the
hard sphere (HS) equilibration process.

The simulations were carried for an array of values
of ¢ between 0.480 and 0.595. For each such volume
fraction we used waiting times from 1 to 10° in powers
of 10. The sequence of configurations obtained is
employed to generate the self-ISF Fs(k,7,1,) =
(I/N)(ZZN:, exp {ik - [r;(ty, + t) — r;(t,)]}) and the mean
square displacement ([Ar(z;t,)]?) = (l/N)(ZlN:l[r,-(tw +
) — ri(t,)]%), where r;(¢) is the position of the ith particle
at time ¢, T = (t — 1) is the correlation time, and the angle

brackets indicate averaging over (at least) 20 independent
realizations. Fg(k,t;t,) is evaluated at k = 7.1, close to the
main peak of S®(k;¢) for all the values of ¢ considered.
The a-relaxation time 7,(k; ¢,1,,) is defined by the condition
Fs(k,ty,t,) = 1/e,and the long-time self-diffusion coefficient
Dy is defined by Dy (¢;1,) = lim,_, o ([Ar(t;1,)]%)/67.

Let us illustrate the results of this procedure for one specific
volume fraction, namely, ¢ = 0.575. In Fig. 1(a) we present
the simulation results for Fg(k,t;t,) evaluated at k = 7.1
as a function of the correlation time 7 for the sequence of
waiting times t,, = 10°, 10',...,10°. This sequence exhibits
the increasing slowing down of the dynamics as the system
approaches its equilibrium state and illustrates the fact that
Fg(k,t;t,) saturates to its equilibrium value F §q(k,r) after a
certain equilibration waiting time t,,'(¢). For example, from
the illustrative datain Fig. 1 we find that 7, (¢ = 0.575) ~ 10*.
A similar evolution and saturation is observed in the static
structure factor S;, (k; ¢), which exhibits, as expected, a large
increase at the first diffraction peak. The inset in Fig. 1(a)
presents the initial static structure factor So(k; @) = S;, —o(k; @)
and its final equilibrium value S$°U(k;¢). From the data for
Fg(k,t;t,) in Fig. 1 we can determine the «-relaxation time
t4(k; ¢,t,) as a function of z,,. The results indicate that the
«-relaxation time 7, (k; ¢ = 0.575,¢,,) saturates approximately
to its equilibrium value 7,%(k; ¢ = 0.575) ~ 2 x 10? within
the equilibration waiting time t,, (¢ = 0.575) ~ 10%.

Figure 1(b) plots the dependence of the «-relaxation time
7,(k; ¢,t,) as a function of waiting time £, for fixed volume
fraction ¢. These plots confirm that beyond an equilibration
waiting time f,,(¢), the a-relaxation time t,(k;¢) satu-
rates approximately to its equilibrium value 4 (k;¢). To
emphasize these concepts, we have highlighted the points
(to (@), 7 (k; ¢)) in Fig. 1(b). In fact, we notice that the high-
lighted points (t;,/(¢), T (k; ¢)) obey the approximate relation
tff,q(qb) ~ 0.27[r§q(k;¢)]1'43, suggesting that the waiting time
tw (¢) required to equilibrate a system is always longer than
the corresponding equilibrium relaxation time 7, '(k;¢) and
that both characteristic times increase strongly with ¢.
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FIG. 2. (Color online) The same simulation data of the
«-relaxation time 7,(k; ¢,t,) as in Fig. 1, but now displayed as a
function of volume fraction ¢ at fixed waiting time ¢,,. The asterisks
indicate, in this case, the crossover volume fraction ¢“)(z,) at the
various waiting times. The circles in the inset display the evolution
of ¢©(t,) with waiting time, and the squares are the corresponding
results in Fig. 5(a) of Ref. [14].

Just like Hermes and Dijkstra [14] did with the pressure
(see their Fig. 1), let us display our data for 7,(k; ¢,t,) of
Fig. 1(b) in a complementary manner, namely, as a function
of volume fraction for fixed waiting time #,, and this is
done in Fig. 2. The first feature to notice in each of the
corresponding curves is that one can distinguish two regimes in
volume fraction, namely, the low-¢ (equilibrated) regime and
the high-¢ (nonequilibrated) regime, separated by a crossover
volume fraction ¢(C)(tw). Focusing, for example, on the results
corresponding to t,, = 103, we notice that ¢“)(r,, = 10%) ~
0.57. In Fig. 2 we have highlighted the crossover points
(@ (ty),Ts (k; ¢)). We observe that the resulting crossover
volume fraction ¢(“(z,,) first increases rather fast with f,, but
then slows down considerably, suggesting a saturation to a
value slightly larger than 0.58, as indicated in the inset of
Fig. 2, which also include the results for ¢(©(z,,) determined
by Hermes and Dijkstra [14] from the pressure, denoted by 1,
in their Fig. 5(a). The exact limit ¢“)(t,, — 00), however, will
hardly be determined by even more powerful simulations, and
from a theoretical point of view a nonequilibrium approach is
clearly required.

One of the main products of the simulation results just pre-
sented is the determination of the volume fraction dependence
of the equilibrium o-relaxation time t(fq(k;d)). Clearly, our
simulation experiment can determine this property only within
the window 0 < ¢ < ¢ (™), where 1™ is the maximum
waiting time achieved in the simulation experiment. In our
case, 1) = 10°, yielding qb(c)(tg‘a") =~ 0.58. These results,
scaled with 7,0(k; @) = 1/k>D°, with D° = /7 /16¢ (see
below), are plotted in Fig. 3 as solid squares. For ¢ > 0.58
the #,,-dependent «-relaxation time t,,(k; ¢,1,,) did not saturate
to its equilibrium value within the total duration of the
present simulation experiment. These results are also plotted
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FIG. 3. (Color online) Volume fraction dependence of the scaled
a-relaxation time t*(k; ¢,t,,) = k>D°t,(k; ¢,t,,). The solid (empty)
squares denote simulation data of fully equilibrated (insufficiently
equilibrated) systems. The solid line represents the predictions of the
SCGLE theory. The dashed line is the fit with 7, (¢) = T exp[A(¢o —
#)7%]. The solid circles correspond to the experimental results of
Fig. 13 of Ref. [10]. Inset (a) plots In[z,(k;¢,2,)] as a function
of A(¢y — ¢)~° for ¢, = 10° (squares), 10* (diamonds), and 103
(triangles), with the arrows pointing at the corresponding crossover
volume fraction ¢)(t,,). Inset (b) compares our simulation results
(empty squares with line) for t*(k; ¢,1,,) vs ¥ = k* D%, for ¢ = 0.58
with the experimental data of Fig. 6 of Ref. [10] (empty circles) at
¢ = 0.5876.

in Fig. 3 as empty squares to denote insufficient equilibration.
Thus, only the data in the solid squares are meaningful
when comparing with the predictions of equilibrium theories
such as MCT or the more recently developed self-consistent
generalized Langevin equation (SCGLE) theory [15].

MCT and the SCGLE theory provide similar answers
regarding the asymptotic divergence of the relaxation times.
We consider, however, that there is no need to appeal to
asymptotic expressions, which have a more restricted range
of validity, when one has easy access to the full numerical
solution of the corresponding theory, as we do for the SCGLE
theory of colloid dynamics. As we have recently discovered
[16], the latter theory also describes the long-time dynamics of
atomic systems provided the solvent short-time self-diffusion
coefficient D is replaced by the kinetic-theory self-diffusion
coefficient, given by D° = /7 /16¢[c/kszT/M] [17,18].
In Fig. 3 we compare the simulated equilibrium data for
(ks p,ty) = k*D1,(k; ¢,t,,) (¢ < 0.58) with the predic-
tions of the SCGLE theory [Egs. (1), (2), and (5)—(8) of
Ref [15], with k. = 8.48 adjusted to fine-tune the comparison
with these equilibrium data]. According to this fit, rgq(k;q&)
would diverge at ¢@ ~ 0.582.

There is, of course, no reason to include the nonequili-
brated data of Fig. 3 in this comparison. As a mere fitting
exercise, however, we notice that the full set including
these nonequilibrated data can be fitted by the expression
To (@) = Too exp[A(pp — $) %], thus finding A = 0.02, § =
1.921, 75, = 0.21, and ¢y = 0.6235 (dashed line in Fig. 3).
Amazingly enough, we find that this functional form provides
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a reasonable fit also for the shorter waiting times ,, = 10*
and 10° using the same values for §, C, and 7., but with
¢o = 0.631 and 0.635, respectively, as illustrated in inset (a)
of Fig. 3.

In order to relate our simulation results with the exper-
imental observations of Refs. [9,10], in inset (b) of Fig. 3
we compare the experimental equilibration data of Fig. 6
of Ref. [10] for the sample labeled ¢**P = 0.5876, with
the simulation data corresponding to ¢ = 0.58 in Fig. 1(b)
above. The excellent agreement between the simulated and
the experimental equilibration data suggests that the difference
in the value of ¢ and ¢“P could be explained by the
intrinsic uncertainties discussed in Ref. [10] regarding the
determination of the volume fraction of the system.

Assuming that this is the case, we can directly compare our
MD simulation results in Fig. 3 for t5(k; ¢)/ 7,5 (k: ¢) with
the experimental data in Fig. 13 of Ref. [10], provided that
we assume a constant ratio ¢ /¢ = 0.58/0.5876 = 0.987.
The dark circles in Fig. 3 are precisely those experimental
data as a function of the experimental volume fraction
reduced by a factor 0.985 to approximately account for
the referred uncertainties. In addition, as a simple manner
to treat hydrodynamic interactions [19], we have to take
into account that the role of the parameter D° is played,
in the experimental data, by the short-time self-diffusion
coefficient Dg(¢), given approximately by Dg(¢)/Ds(¢p =
0)=(1—¢)/(1+41.5¢) [20]. The resulting comparison in
Fig. 3 suggests a completely similar phenomenology, although
it is quite clear only in the case of our simulation data
that the departure of t,(k;¢,t, = 10%) from the equilibrium
curve predicted by the SCGLE theory near ¢ is due to the
insufficient equilibration of the system within the maximum
waiting time ™ = 10° of our simulation experiment.
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The results just presented suggest, however, that any
simulation aimed at determining the equilibrium value of
dynamic order parameters such as 7,(k; ¢,t,) and Dy (¢;t,)
near the dynamic arrest transition is bound to be limited
by the duration of the simulation experiment, represented
by the maximum waiting time #,, involved. This limits the
determination of these equilibrium values to the window
of volume fractions 0 < ¢ < (])(C)(t;j‘a"). For ¢ > ¢(C)(t;‘a"),
the simulation results will be reporting the properties of an
insufficiently equilibrated system. The results presented here
indicate that if we want to enlarge this window, we would have
to go to exponentially longer waiting times, which is bound
sooner or later to become a lost battle. There is, of course, no
obvious reason to believe that a different situation will prevail
in experimental samples.

Let us finally notice that the expression 7,(¢)=
Too Xp[A(¢y — 9) %] gives a reasonable fit for our nonequilib-
rium data, even at early stages in the waiting time #,,. Thus, in
the present case it is clear that the dynamical regime described
by this functional actually involves the lack of equilibration
of the system, whose correct analysis must then be made in
the framework of a nonequilibrium theory. It is pertinent to
mention that our original motivation to carry out the present
simulations was precisely the need to generate reliable data of
incompletely equilibrated systems that will serve as a reference
to test the recently developed nonequilibrium extension [21]
of the SCGLE theory.
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