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A nonequilibrium extension of Onsager’s canonical theory of thermal fluctuations is employed to derive a
self-consistent theory for the description of the statistical properties of the instantaneous local concentration
profile n�r , t� of a colloidal liquid in terms of the coupled time-evolution equations of its mean value n̄�r , t� and
of the covariance ��r ,r� ; t���n�r , t��n�r� , t� of its fluctuations �n�r , t�=n�r , t�− n̄�r , t�. These two coarse-
grained equations involve a local mobility function b�r , t� which, in its turn, is written in terms of the memory
function of the two-time correlation function C�r ,r� ; t , t����n�r , t��n�r� , t��. For given effective interactions
between colloidal particles and applied external fields, the resulting self-consistent theory is aimed at describ-
ing the evolution of a strongly correlated colloidal liquid from an initial state with arbitrary mean and cova-
riance n̄0�r� and �0�r ,r�� toward its equilibrium state characterized by the equilibrium local concentration
profile n̄eq�r� and equilibrium covariance �eq�r ,r��. This theory also provides a general theoretical framework
to describe irreversible processes associated with dynamic arrest transitions, such as aging, and the effects of
spatial heterogeneities.
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I. INTRODUCTION

In this paper a nonequilibrium generalization is presented
of the self-consistent generalized Langevin equation
�SCGLE� theory of colloid dynamics �1,2� and of its recent
adaptation as a theory of dynamic arrest �3,4�, with the pur-
pose of describing nonequilibrium diffusive phenomena, in
general, and irreversible aging processes associated with the
glass and the gel transitions �5–9�, in particular. This gener-
alized theory is based on a nonequilibrium extension of On-
sager’s canonical theory of thermal fluctuations. The result-
ing theory contains, for example, the fundamental equation
of dynamic density-functional theory �DDFT� �10� as a par-
ticular limit, whereas in other limit one can recognize the
basic equation of the theory of early spinodal decomposition
�11�. A practical and concrete use of the resulting general
theory of colloid dynamics is illustrated in a related paper
�12� with a quantitative application to the prediction of the
aging processes occurring in a suddenly quenched colloidal
liquid.

The dynamic properties of colloidal dispersions have been
the subject of sustained interest for many years �13–15�.
These properties can be described in terms of the relaxation
of the fluctuations �n�r , t� of the local concentration n�r , t�
of colloidal particles around its bulk equilibrium value n
=N /V. The average decay of �n�r , t� is described by the
two-time correlation function

F�k,�;t� � V−1�n�k,t + ���n�− k,t�

of the Fourier transform �FT� �n�k , t� of the fluctuations
�n�r , t�, whose equal-time limit is S�k ; t��F�k ,�=0; t�
=V−1�n�k , t��n�−k , t�. We shall refer to the time � as the
correlation time. If some external �or internal� constraints
that kept a system at a certain macroscopic state are broken
at the �evolution� time t=0, the system relaxes spontane-
ously, searching its new thermodynamic equilibrium state. If
the end state, however, is a glass or a gel, one refers to t as

the waiting or aging time �5–9�. The evolution of S�k ; t� and
F�k ,� ; t� as a function of the time t characterizes the non-
equilibrium evolution of the system, and its theoretical un-
derstanding is a major fundamental challenge.

If the system is a fluid and it has fully relaxed to its
thermodynamic equilibrium state, the properties above no
longer depend on t, i.e., F�k ,� ; t�=F�k ,�� and S�k ; t�=S�k�.
The equilibrium stationary correlation function F�k ,�� is
then referred to as the intermediate scattering function, and
its initial value S�k� is referred to as the equilibrium static
structure factor. These properties can be measured by a vari-
ety of experimental techniques, including �static and/or dy-
namic� light scattering �6,7,13�. S�k�, being an equilibrium
property, is amenable to theoretical calculation using statis-
tical thermodynamic methods �16�. The fundamental under-
standing of F�k ,��, on the other hand, requires the develop-
ment of theoretical methods to describe the correlations of
the local concentration fluctuations, and a number of such
approaches have been proposed for their theoretical calcula-
tion �13–15,17�. One of them has been developed within the
last decade and is referred to as the SCGLE theory of colloid
dynamics �1,2,18–20�. This theory has been recently applied
to the description of dynamic arrest phenomena in several
specific colloidal systems that include monodisperse suspen-
sions with hard-sphere interactions, moderately soft-sphere
and electrostatic repulsions, short-ranged attractive interac-
tions, and model mixtures of neutral and charged particles
�3,4,21–26�.

In spite of the long tradition in the study of glasses
�27–29�, until recently the only well-established and success-
ful theoretical framework leading to first-principles quanti-
tative predictions of the dynamic properties of colloidal liq-
uids near their dynamic arrest transition was the
conventional mode-coupling theory �MCT� of the ideal glass
transition �29–32�. Many of the predictions of this theory
have been systematically confirmed by their detailed com-
parison with experimental measurements in model colloidal
systems �33–40�. In this context, we can mention that the
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more recently developed SCGLE theory of dynamic arrest
leads to similar dynamic arrest scenarios as MCT �3,21� for
several specific �mostly monodisperse� systems, although for
colloidal mixtures differences may appear in some circum-
stances, as reported in Refs. �24–26�.

An important common feature of both theories in their
current status is that they are able to predict the regions of
the control parameter space in which the system is expected
to be dynamically arrested, i.e., they predict what we refer to
as the “dynamic arrest phase diagram” of the system �25,26�.
While it is important to pursue the application of these two
theories to specific idealized or experimental model systems
and to compare their predictions, it is also important to at-
tempt their extension to the description of the detailed non-
equilibrium processes leading to dynamically arrested end
states. Aging effects, for example, should be a fundamental
aspect of the experimental and theoretical characterization of
these nonequilibrium states. These preoccupations have been
addressed in the field of spin glasses, where a mean-field
theory has been developed within the last two decades �41�.
The models involved, however, lack a geometric structure
and hence cannot describe the spatial evolution of real col-
loidal glass formers. Although experimental studies �5–9�
and computer simulations �42–44� have provided important
information about general properties of aging, until now no
quantitative first-principles theory is available to describe the
irreversible formation of structural glasses.

About a decade ago Latz �45� attempted to extend MCT
to describe the irreversible relaxation, including aging pro-
cesses, of a suddenly quenched glass-forming system. A ma-
jor aspect of his work involved the generalization to non-
equilibrium conditions of the conventional equilibrium
projection operator approach �46� to derive the correspond-
ing memory function equations in which the mode-coupling
approximations could be introduced. Similarly, De Gregorio
et al. �47� discussed time-translational invariance and the
fluctuation-dissipation theorem in the context of the descrip-
tion of slow dynamics in system out of equilibrium but close
to dynamical arrest. They also proposed extensions of ap-
proximations long known within MCT. Unfortunately, in nei-
ther of these two theoretical efforts, quantitative predictions
were presented that could be contrasted with experimental or
simulated results in specific model systems of structural
glass formers.

The present work is aimed at extending the SCGLE
theory of dynamic arrest to nonequilibrium conditions. This
paper contains the proposal of such general theory, while the
accompanying paper �12� reports a concrete quantitative
application. The general theory proposed here consists of the
time-evolution equations for the mean value and for the co-
variance of the instantaneous local concentration profile
n�r , t� of a colloidal liquid coupled, through a local mobility
function b�r , t�, with the two-time correlation function
C�r ,r� ; t , t����n�r , t��n�r� , t�� of the local concentration
fluctuations. A set of well-defined approximations in the
memory function of C�r ,r� ; t , t�� leads to the nonequilibrium
extension of the self-consistent generalized Langevin equa-
tion theory of colloid dynamics to spatially nonuniform and
temporally nonstationary systems. The resulting theory is ap-
plied in �12� to the description of aging effects in a specific
model glass-forming colloidal liquid.

In contrast with MCT, the SCGLE theory does not in-
volve the assumption of an underlying Hamiltonian �or any
other microscopic� level of description, nor the use of pro-
jection operator techniques. Instead, it is based on what we
refer to as Onsager’s canonical theory of equilibrium thermal
fluctuations. Since the description of thermal fluctuations and
relaxation processes can be approached from a bewildering
number of theoretical perspectives, involving a diversity of
issues, approaches, aims, methodologies, and nomenclatures
�48–50�, it is necessary to state that in this work for “Onsag-
er’s theory” we mean the general and fundamental laws of
linear irreversible thermodynamics and the corresponding
stochastic theory of thermal fluctuations, as stated by On-
sager �51,52� and by Onsager and Machlup �53,54�, respec-
tively, with an adequate extension �55,56� to allow for the
description of memory effects.

Viewed as a theory of fluctuations, Onsager’s theory re-
fers to systems in thermodynamic equilibrium and, hence,
assumes stationary conditions. Thus, generalizing the
SCGLE theory of colloid dynamics to nonequilibrium calls
for an extension of Onsager’s theory to nonstationary non-
equilibrium conditions, outside the so-called “linear regime,”
where its validity has been universally tested �48�. Such an
extended Onsager’s theory is discussed in detail elsewhere
�57�, and here we only provide a brief summary �see Sec. II
below�. In essence, however, this extension consists of the
assumption that the t-dependent irreversible evolution of a
system toward its stable equilibrium state proceeds as a vir-
tually continuous sequence of nonequilibrium, but momen-
tarily stationary, states. The main objective of the present
paper is then to apply this extended canonical theory as a
fundamental framework in which to discuss the dynamics of
a colloidal suspension that evolves irreversibly toward its
equilibrium state. Such application is the subject of Sec. III.

According to this program, our discussion will involve
two distinct levels of generality. The first corresponds to the
rather abstract and most general description provided by On-
sager’s extended theory in terms of a set of macroscopic state
variables, generically denoted by �a1 ,a2 , . . . ,aM��a, as re-
viewed in the following section. The second corresponds to
the description of diffusive processes in colloidal disper-
sions, where the abstract objects in Onsager’s theory take a
concrete meaning. Bridging these two levels of discussion
requires that we identify the specific correspondence be-
tween the abstract concepts in Onsager’s theory and the con-
crete concepts pertaining to the other more specific level. For
example, the abstract state variables ai will be identified with
Ni /�V, the number concentration of particles in the ith cell
of an imaginary partitioning of the volume occupied by the
colloidal system in M cells of volume �V. In the continuum
limit, the components of the state vector a�t� then become
the local concentration profile n�r , t�, and the fundamental
thermodynamic relation �FTR� S=S�a� �which assigns to any
point a of the thermodynamic state space a value of the
entropy �58�� will be identified with the functional depen-
dence of the free energy on the local concentration profile
employed, for example, in the classical density-functional
theory �59� or in its more recent dynamic version �10,60,61�.
For completeness, the structure of this thermodynamic
framework is reviewed in the Appendix. Finally, in the last
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section we summarize the main conclusions of the present
work.

II. GENERALIZED ONSAGER THEORY

In this section we summarize the main features of the
extension of Onsager’s theory to nonstationary nonequilib-
rium states presented in detail in Ref. �57�. Thus, consider a
system whose macroscopic state is described in terms of a set
of M extensive variables ai�t�, with i=1,2 , . . . ,M, which we
group as the components of a M-component �column� vector
a�t�. The fundamental postulate of this generalized theory is
that the dynamics of the state vector a�t� may be represented
by a multivariate stochastic process, which is globally non-
stationary, but that within any small interval of the evolution
time t may be regarded as approximately stationary. This
local stationarity approximation is then complemented with
the assumption that the mean value ā�t� is the solution of a
generally nonlinear equation, represented by

dā�t�
dt

= R�ā�t�� , �2.1�

whose linear version in the deviations �ā�t�� ā�t�−aeq from
an equilibrium value aeq reads

d�ā�t�
dt

= − L�aeq� · E�aeq� · �ā�t� , �2.2�

with L and E being M �M matrices and with the symbol “·”
indicating the corresponding matrix product. The matrix
L�aeq� is referred to as the kinetic matrix, related to the vec-
tor of “fluxes” R�aeq� of Eq. �2.1� by L�aeq�
�−��R�a� /�a�a=aeq ·E−1�aeq�.

On the other hand, E�a� is the thermodynamic matrix,
defined as

Eij�a� � −
1

kB
� �2S�a�

�ai � aj
� = − � �Fi�a�

�aj
� �i, j = 1,2, . . . ,M� ,

�2.3�

in which the function S�a� determines the dependence of the
entropy on the components of the vector a, i.e., S=S�a� is the
fundamental thermodynamic relation of the system; and,
hence, Fj�a��kB

−1��S�a� /�aj� is the conjugate intensive vari-
able associated with aj. One should notice that Eq. �2.2� can
be written as d�a�t� /dt=L�aeq� ·�F�t�, where �F�t�
�F�ā�t��−Feq is the macroscopic deviation of the vector
F�ā�t�� of intensive parameters from its equilibrium value
Feq=F�aeq�. This relaxation equation is immediately recog-
nized as the classical format of the linear laws of irreversible
thermodynamics.

From these premises a time-evolution equation for the
M �M covariance matrix ��t���a�t��a†�t� can be derived
�57�, which reads

d��t�
dt

= − L�ā�t�� · E�ā�t�� · ��t�

− ��t� · E�ā�t�� · L†�ā�t�� + �L�ā�t�� + L†�ā�t��	 .

�2.4�

This equation may be regarded as a simple extension of the
equation of motion for the covariance involved in the con-
ventional Onsager theory �see, for example, Eq. �1.8.9� of
Ref. �48��, in which the matrices L�āeq� and E�āeq� are re-
placed by L�ā�t�� and E�ā�t��. The detailed arguments to see
that this is the proper manner to extend Onsager’s result to
nonstationary processes can be found in Ref. �57�.

Thus, if two essential pieces of information were avail-
able, namely, the fundamental thermodynamic relation S
=S�a� and the state dependence of R�a�, then Eqs. �2.1� and
�2.4� would constitute a closed system of equations for the
mean value ā�t� and the covariance ��t�. These are essen-
tially the first and second moments of the one-time probabil-
ity distribution P1�a1 , t1� that the state vector a has the value
a1 at the time t= t1. Let us stress that the full knowledge of
this probability distribution is equivalent to the full knowl-
edge of the macroscopic state of the system, even though for
many purposes one may only be interested in one or some of
its moments. For example, the probability distribution of the
thermodynamic equilibrium state is fully determined by the
Boltzmann-Planck postulate to be �48,62� P1�a , t�= Peq�a�
=exp��S�a�−S�aeq�� /kB	, whose mean value and covariance
are �58,63� ā�t�=aeq and ��t�=�eq=E−1�aeq�. One may
stretch this concept and introduce the assumption that the
nonequilibrium evolution of the system can be described ap-
proximately by P1�a , t�= P�l.e.��a , t��exp�S�a�−S�ā�t��	 /kB,
whose covariance is given by ��t�=��l.e.��t�=E−1�ā�t��. We
shall refer to this as the local equilibrium approximation, and
an idealized time-dependent process that satisfies this ap-
proximation at any time t shall be referred to as a quasistatic
process. We must emphasize that the present extended On-
sager’s theory is, of course, not based on this approximation.

If the goal were to fully determine P1�a , t�, in principle,
one could attempt to write the time-evolution equations cor-
responding to the higher-order moments, thus constructing
an infinite hierarchy of equations for all such moments. Al-
ternatively, also—in principle—one could attempt to write
the time-evolution equation for P1�a , t�, from which one
could determine the time evolution of all the moments. Our
intention, however, is not to follow any of these strategies,
nor to assume that the stochastic process is Gaussian, so that
the first two moments above will suffice to fully determine
P1�a , t�. In fact, we are not actually interested in determining
P1�a , t� at all. Instead, our aim is to use the two general
equations above for ā�t� and ��t� as the fundamental frame-
work in which we introduce approximations that lead to a
closed system of equations for these directly measurable
properties, at least in specific and concrete cases, as in the
colloidal context discussed below. For this purpose, rather
than analyzing the higher-order moments of P1�a , t�, we con-
sider the two-time correlation function, i.e., the second mo-
ment of the two-time probability distribution
P2�a1 , t1 ;a2 , t2�, as one aspect of the properties of the ther-
mal fluctuations �a�t+��=a�t+��− ā�t� around the nonsta-
tionary mean value ā�t�, within the local stationarity approxi-
mation.

Thus, the second fundamental postulate of the generalized
Onsager theory is that the locally stationary fluctuations
�a�t+�� can be described by a mathematical model that we
refer to as a generalized Ornstein-Uhlenbeck process, dis-
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cussed in Ref. �55�, which in the present context is defined
by the most general linear stochastic differential equation
with additive noise, which has the following general struc-
ture:

d�a�t + ��
d�

= − ��ā�t�� · ���t��−1 · �a�t + ��

− 

0

�

d����� − ��; ā�t�� · ���t��−1 · �a�t + ���

+ f�t + �� , �2.5�

in which the stochastic vector f�t+�� is assumed stationary
but not necessarily Gaussian or � correlated, the matrix ��a�
is antisymmetric, ��a�=−�†�a�, and the memory matrix
��� ;a� satisfies the fluctuation-dissipation relation
��� ;a�t��=�†�−� ;a�t��= �f�t+��f†�t+0��. From this general-
ized Langevin equation one then derives the time-evolution
equation for the nonstationary time-correlation function
C�� ; t���a�t+���a†�t�, which reads

�C��;t�
��

= − ��ā�t�� · �−1�t� · C��;t�

− 

0

�

d����� − ��; ā�t�� · �−1�t� · C���;t� , �2.6�

and whose initial condition is C��=0; t�=��t�. This equation
describes the decay of the correlation function C�� ; t� with
the “microscopic” correlation time �, after the system has
evolved during a “macroscopic” evolution time t from an
initial state described by a0� ā�t=0� and �0���t=0� to the
“current” state described by ā�t� and ��t�.

Notice that this equation involves ��t� explicitly and ā�t�
implicitly through the matrices ��ā�t�� and ��� ; ā�t��. Thus,
besides requiring the actual values of ā�t� and ��t�, this
equation also requires the information on the state depen-
dence of the matrices ��a� and ��� ;a�. This information,
however, must be closely related to the kinetic matrix L�a�.
To establish such relationship, notice that if the system has
reached a thermodynamic equilibrium state, in which
P1�a , t�= Peq�a�, ā�t�=aeq, and ��t�=�eq=E−1�aeq�, then Eq.
�2.5� may be written, in the so-called “Markov” limit, as

d�a���
d�

= − L�aeq� · E�aeq� · �a��� + f��� , �2.7�

with L�a� defined as

L�a� � ��a� + 

0

	

d����;a� . �2.8�

Equation �2.7�, however, is the linear stochastic equation
with additive white noise of the Onsager-Machlup theory of
equilibrium fluctuations �53,54�. According to Onsager’s
regression hypothesis, this equation must be identical,
except for the additive white noise f���, to the pheno-
menological relaxation equation in Eq. �2.2�. This requires
that the definition of the matrix L�a� in Eq. �2.8� above must
be consistent with the phenomenological definition L�aeq�
�−��R�a� /�a�a=aeq ·E−1�aeq� beneath Eq. �2.2�.

The results above then state that the kinetic matrix L�a�
may be obtained either by linearizing the nonlinear phenom-
enological relaxation �2.1�, if this equation is known a priori,
or by means of the general relationship in Eq. �2.8�, if the
matrices ��ā�t�� and ��� ; ā�t�� can be determined by inde-
pendent arguments, as we propose here in the context of
colloid dynamics. In general, the antisymmetric matrix
��ā�t�� represents conservative �mechanical, geometrical, or
streaming� terms, and its determination in specific contexts is
relatively straightforward. In contrast, the memory matrix
��� ; ā�t�� summarizes the effects of all the complex dissipa-
tive irreversible processes taking place in the system. Its ex-
act determination is perhaps impossible except in specific
cases or limits; otherwise, one must resort to approximations.
These may have the form of a closure relation expressing
��� ; ā�t�� in terms of the two-time correlation matrix C�� ; t�
itself, giving rise to a self-consistent system of equations, as
we illustrate in the application that follows.

As a final observation, let us mention that throughout the
previous discussion we have assumed that the variables ai�t�
represent extensive state variables. In reality, one could also
describe the state of the system in terms of any combination
of extensive and intensive variables. The choice depends on
the convenience, given the macroscopic conditions imposed
on the system. Using only extensive variables, for example,
is the most convenient choice if the system is subject to
isolation conditions. If, however, the system is in contact
with a thermal reservoir, the temperature, rather than the in-
ternal energy, may be a more convenient variable. On the
other hand, if the external constraints �isolation, contact with
thermal reservoirs, applied external fields, etc.� are time in-
dependent, the time-evolution equations for the mean value
ā�t�, for the covariance ��t� and for the correlation function
C�� ; t� �Eqs. �2.1�, �2.4�, and �2.6��, will describe the spon-
taneous relaxation of the system toward the corresponding
equilibrium state. We may, however, also consider the possi-
bility that these constraints vary in time in a programmed
manner. In this case, the time evolution of the parameters
describing these constraints �for example, the overall density
of the system or the temperature of the heat reservoir� may
be prescribed, rather than determined as the solution of any
time-evolution equation, such as Eq. �2.1�, and the time-
evolution equations for the covariance and the correlation
function �Eqs. �2.4� and �2.6�� will describe the nonequilib-
rium response of the system to these forced time-dependent
macroscopic constraints.

III. APPLICATION TO COLLOID DYNAMICS

In this section we discuss the general problem of the dif-
fusive relaxation of the local concentration of colloidal par-
ticles in the absence of hydrodynamic interactions but which
interact through pairwise direct forces represented by the ef-
fective pair potential u�r ,r��. Thus, let us consider a disper-
sion of N such colloidal particles of mass m in a volume V
which, in the absence of external fields, has a uniform bulk
number concentration nB=N /V. In the presence of a conser-
vative static external field that exerts a force Fext�r�
=−�
�r� on one particle located at position r, the mean
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local concentration profile of colloidal particles, n̄�r , t�, will
evolve in time from some initial condition n̄�r , t=0�=n0�r�
toward its stable thermodynamic equilibrium value neq�r�,
while the covariance ��r ,r� ; t���n�r , t��n�r� , t� of the fluc-
tuations �n�r , t��n�r , t�− n̄�r , t� will evolve from an initial
value �0�r ,r�� to a final equilibrium value �eq�r ,r��. The
initial values n0�r� and �0�r ,r�� are—of course—arbitrary,
whereas the final equilibrium mean and covariance, neq�r�
and �eq�r ,r��, are univocally dictated by the external con-
straints imposed on the system �isolation, contact with reser-
voirs, etc.� and by the external field 
�r�, according to the
second law of thermodynamics. We open this section with a
brief reference to the specific thermodynamic framework in
which this problem is embedded. Given its conceptual im-
portance, we provide additional details on this topic in the
Appendix. In the rest of this section we elaborate the dy-
namic aspects as a concrete application of the generalized
Onsager theory just reviewed.

A. Thermodynamics of fluids in spatially
inhomogeneous states

The most fundamental thermodynamic ingredient in the
application of this general theory is the FTR S=S�a�, which
assigns a value of the entropy at any possible values of the
state variables �a1 ,a2 , . . . ,aM�=a �58�. In practice, however,
we only need the first and second derivatives of S�a�, which
define the intensive parameters Fj�a��kB

−1��S�a� /�aj� and
the thermodynamic matrix Eij�a��−��Fi�a� /�aj�. To specify
the variables �a1 ,a2 , . . . ,aM�=a of our problem, let us first
mentally partition the volume V in a number C of smaller
portions �or cells�, whose internal energy, particle number,
and volume are denoted by E�r�, N�r�, and V�r�, respectively,
with r=1,2 , . . . ,C. Then, the fundamental thermodynamic
relation of this system reads S=S�E ,N ,V�, where E, N, and
V are C-dimensional vectors with components E�r�, N�r�, and
V�r� �r=1,2 , . . . ,C�. For the sake of simplicity let us assume
that the volumes V�r� are all equal, V�r�=�V=V /C, and re-
main fixed, so that only the variables �E ,N� are needed to
define a thermodynamic state. This corresponds to the selec-
tion a��E ,N�.

Just like in ordinary classical thermodynamics, under
some circumstances one may prefer to express the FTR not
in terms of the variables �E ,N�, which involve the local
internal energy E�r�, but in terms of the particle number pro-
file N and of some form of “local temperature.” Such repre-
sentation is most convenient under conditions in which the N
particle system is in contact with a thermal reservoir �in our
case the supporting solvent� that keeps temperature constant
and uniform. Under these circumstances the chemical equa-
tion of state can be expresses as the dependence ��r�

=��r���R ;N� of the local electrochemical potential on the
profile N and of the thermal reservoir parameter �R, as it is
explained in the Appendix. In the general expression for
��r���R ;N� in Eq. �3.1� below the explicit reference to the
parameter �R is omitted.

Let us notice that the discussion above is independent of
the spatial resolution employed to describe the nonunifor-
mity of the distribution of matter and energy, i.e., on the

number C of cells in which we mentally partitioned the total
volume V. Since this is a mere informatics concept �the cells
are not meant to represent macroscopic subsystems�, one can
take the limit of maximum resolution �V→0 �or C→	�.
Although no new concepts arise in taking this limit, the no-
tation and the nomenclature change somewhat. For this, let
us define the vectors n and e whose components are the local
particle number density n�r��N�r� /�V and the local energy
density e�r��E�r� /�V, and whose average remains finite in
this limit. Second, rather than labeling the cells with the
discrete index r, running from 1 to C, now we label them
with the position vector r of their centers. In the limit of
vanishingly small cells, r varies continuously in the volume
V; and, hence, the vector components n�r� and e�r� with r
=1,2 , . . . ,C now become the functions n�r� and e�r� of the
position vector r�V. As a consequence, what is used to be
an ordinary function of the vectors N and E, such as the
entropy, now becomes what is called a functional of the
functions n�r� and e�r�. For example, the local electrochemi-
cal potential ��r�=��r���R ;n� of the particles at cell r now
becomes an ordinary function of the position vector r and
a functional of n�r�. This dependence will be indicated
as ��r ;�R ,n� or simply as ��r ;n�. Of course, the ordinary
derivative of a function, such as the thermodynamic ma-
trix E�r,r���N ;��������r��N ;�� /�N�r��� in Eq. �A15� of the
Appendix, now becomes the functional derivative
(����r ;n� /�n�r��). In the continuum limit, we must also
replace ��V�
r with a volume integral �d3r on the vector r,
and �r,r� /�V with the Dirac delta function ��r−r��. Clearly,
“matrices” such as u�r,r�� now become functions of the two
position vectors r and r�, and matrix products now become
convolutions.

With this notation, let us now write the most general ex-
pression for the local electrochemical potential ��r ;n�t�� at
position r in units of the thermal energy kBT=�−1, namely
�59�,

���r;n� = ��in�r;n� + �
�r�

� ������ + ln n�r� − c�r;n� + �
�r� . �3.1�

In this equation 
�r� is the potential of the external field
acting on a particle at position r. The first two terms of this
definition of �in�r ;n� �������+ln n�r�� are the ideal-gas
contribution to the chemical potential, whereas the term
−c�r ;n� contains the deviations from ideal behavior due to
interparticle interactions.

Using Eq. �3.1�, the thermodynamic matrix E�r ,r� ;n�
� [����r ;n� /�n�r��] can then be written in general as

E�r,r�;n� = ��r − r��/n�r� − c�2��r,r�;n� , �3.2�

with c�2��r ,r� ;n�� (�c�r ;n� /�n�r��) being the functional de-
rivative of c�r ;n� with respect to n�r��, referred to as the
direct correlation function. On the other hand, the covariance
matrix ��r ,r��=�n�r ,0��n�r� ,0� can be written in terms of
the total correlation function h�2��r ,r�� as

��r,r�� = n�r���r − r�� + n�r�n�r��h�2��r,r�� . �3.3�

The matrices E�r ,r� ;n� and ��r ,r�� are not in general re-
lated to each other. It is only when they are evaluated at the

GENERAL NONEQUILIBRIUM THEORY OF COLLOID DYNAMICS PHYSICAL REVIEW E 82, 061503 �2010�

061503-5



equilibrium local concentration profile neq�r� that they are
related to each other by the second equilibrium condition in
Eq. �A15� of the Appendix, which in the present notation
reads


 dr��eq�r,r��E�r�,r�;neq� = ��r − r�� . �3.4�

Using Eqs. �3.2� and �3.3�, one can immediately see that this
equation is equivalent to the well-known Ornstein-Zernike
equation �16�

h�r,r�� = c�r,r�� +
 d3r�c�r,r��neq�r��h�r�,r�� , �3.5�

where c�r ,r�� and h�r ,r�� are, respectively, the equilibrium
values of c�2��r ,r�� and h�2��r ,r��.

In conclusion, the thermodynamic matrix E�r ,r� ;n�t��
evaluated at an arbitrary state n�t� is fully determined by the
chemical equation of state. Its equilibrium value,
E�r ,r� ;neq�, determines the covariance �eq�r ,r�� of the
equilibrium distribution by means of Eq. �3.4�, which is
equivalent to the Ornstein-Zernike equation above. The time-
dependent covariance ��r ,r� ; t� of an arbitrary nonequilib-
rium state, however, cannot be determined in this manner,
unless the local equilibrium approximation �i.e., the quasi-
static limit� is assumed to be valid. Thus, in general we need
an independent nonthermodynamic condition to determine
this important property, and this is the main subject of the
following section.

B. Time evolution of n̄(r , t) and �(r ,r� ; t)

Let us start by writing the analog of Eq. �2.1�. The mac-
roscopic diffusive relaxation of the local concentration n̄�r , t�
of colloidal particles is described by the most general non-
linear but spatially and temporally local diffusion equation
provided by Fick’s law, which reads �48,49�

� n̄�r,t�
�t

= D0 � · b�r,t�n̄�r,t� � ���r; n̄�t�� . �3.6�

In this equation D0 is the diffusion coefficient of the colloidal
particles in the absence of interactions between them and
b�r , t� is a local reduced mobility, to be specified later, which
describes the frictional effects of the direct �i.e., conserva-
tive� interactions between particles, as deviations from the
value b�r , t�=1.

We may now linearize this equation around the equilib-
rium profile neq�r�, to get the analog of Eq. �2.2�, from which
we can identify the matrix L�r ,r� ; n̄�t�� of Onsager kinetic
coefficients as

− L�r,r�; n̄�t�� = D0 � · n̄�r,t�b�r,t� � ��r − r�� . �3.7�

Using Eq. �2.4� we can then write the relaxation equation for
��r ,r� ; t� as

���r,r�;t�
�t

= D0 � · n̄�r,t�b�r,t� �

�
 dr2E�r,r2; n̄�t����r2,r�;t�

+ D0�� · n̄�r�,t�b�r�,t���

�
 dr2E�r�,r2; n̄�t����r2,r;t�

− 2D0 � · n̄�r,t�b�r,t� � ��r − r�� . �3.8�

Let us now describe the fluctuations �n�r , t+���n�r , t
+��− n̄�r , t� of the local concentration at position r and time
t+� around the mean value n̄�r , t� within a microscopic tem-
poral resolution described by the time �. The assumption of
local stationarity means that in the time scale of �, n̄�r , t� is
to be treated as a constant. We may add the spatial counter-
part of this simplifying assumption. Thus, we write the fluc-
tuations as �n�r+x , t+���n�r+x , t+��− n̄�r , t�, where the
argument r of n̄�r , t� refers to the macroscopic resolution of
the measured variations of the local equilibrium profile,
whereas the position vector x adds the possibility of micro-
scopic resolution in the description of the thermal fluctua-
tions. Defining the fluctuations as the deviations of the mi-
croscopic local concentration profile n�r+x , t+�� from the
mean value n̄�r , t� indicates that, within the microscopic spa-
tial variations described by the position vector x, n̄�r , t� must
be treated as a constant. To a large extent, this is equivalent
to recovering the partitioning of the system in cells of a small
but finite volume �V and assuming that variations from cell
to cell are described by the vector r, whereas variations
within cells are described by the vector x, and that within the
intracell scale, the system can be regarded as uniform and
isotropic. Under these conditions, the covariance ��r+x ,r
+x� ; t� may be written as ���x−x�� ;r , t�, and in terms of its
Fourier transform �FT� ��k ;r , t� as

���x − x��;r,t� =
1

�2
�3
 d3ke−ik·�x−x����k;r,t� . �3.9�

In this manner, Eq. �3.8� may be rewritten as

���k;r,t�
�t

= − 2k2D0n̄�r,t�b�r,t�E„k; n̄�r,t�…��k;r,t�

+ 2k2D0n̄�r,t�b�r,t� , �3.10�

where E(k ; n̄�r , t�) is the FT of E(�x−x�� ; n̄�r , t�), defined as
the thermodynamic matrix evaluated at a uniform concentra-
tion profile with a constant value given by the local and
instantaneous concentration n̄�r , t� at position r and time t.

C. Relaxation equation for C(t , t�)

The description of the fluctuations �n�r+x , t+���n�r
+x , t+��− n̄�r , t� with the temporal and spatial resolution de-
scribed by the time � and position vector x cannot be ob-
tained by simply linearizing the macroscopic version of
Fick’s diffusion equation above. Instead, one has to consider
a generalized version of Fick’s law, which contains Eq. �3.6�
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as its macroscopic limit. Such an extension reads

�n�r,t�
�t

= D0 � · 

0

t

dt�
 d3r�b�r − r�;t − t��

�n�r�,t�������r�;n�t��� , �3.11�

where b�r ; t� is a time-dependent local mobility that must yet
be specified.

This generalized diffusion equation may be derived rather
simply by complementing the continuity equation,

�n�r,t�
�t

= − � · j�r,t� , �3.12�

with a constitutive relation constructed at the level of the
particle current. We require that the friction force on the
particles in the neighborhood of position r must be equili-
brated by the osmotic force −��in�r ;n� and by the external
force −���r� on each particle, both included in −���r ;n�,
so that

�0j�r,t� + 

0

t

dt�
 d3r����r − r�;t − t�� · j�r,t�

= − n�r,t� � ��r;n�t�� . �3.13�

The friction force per unit volume on the left-hand side of
this equation is the sum of the friction due to the supporting
solvent, �0j�r , t�, and the frictional effects due to the interac-
tions between the colloidal particles themselves, ����j�r , t�.
The latter, however, is assumed to be in general spatially and
temporally nonlocal. The solution of this equation for j�r , t�
can be written as

j�r,t� = − D0

0

t

dt�
 d3r�b�r − r�;t − t��

�n�r�,t�������r�;n�t��� , �3.14�

where D0 is the free diffusion coefficient, defined here as
D0�kBT /�0, and where the spatially and temporally nonlo-
cal mobility kernel b�r−r� ; t� is defined in terms of the
memory function ����r−r� ; t− t������r−r� ; t− t�� /�0 as
the solution of the equation

b�r − r�;t� = ��r − r��2��t� − 

0

t

dt�
 d3r����

��r − r�;t − t��b�r� − r�;t�� . �3.15�

Using Eq. �3.14� in the continuity equation �3.13� finally
leads us to Eq. �3.11�, which reduces to Eq. �3.6� when the
generalized mobility kernel b�r−r� ; t− t�� is approximated
by its spatially and temporally local limit,

b�r − r�;t − t�� = b�r,t���r − r��2��t − t�� , �3.16�

where

b�r,t� � 
 dx

0

	

d�b�x,�;r,t� , �3.17�

with b�x ,� ;r , t��b��r+x�−r ; �t+��− t�.

We can now proceed to identify the elements of Eq. �2.5�
corresponding to our problem. In the present case, the corre-
sponding antisymmetric matrix ��ā�t�� vanishes due to time-
reversal symmetry arguments �55�. We can then write the
matrix ��� ; ā�t�� as the non-Markovian and spatially nonlo-
cal Onsager matrix implied by the general diffusion equation
in Eq. �3.11�, which must reflect, in addition, that within the
temporal and spatial resolution of the variables x and �, the
local concentration profile n̄�r , t� remains uniform and sta-
tionary. These assumptions can be summarized by the fol-
lowing stochastic equation for �n�r+x , t+��:

��n�r + x,t + ��
��

= D0n̄�r,t��x · 

0

�

d��
 dx1b�x − x1,�

− ��;r,t��x1
 dx2�−1��x1 − x2�;t�

��n�r + x2,t + ��� + f�r + x,t + �� ,

�3.18�

where the function �−1��x−x�� ; t� is the inverse of the cova-
riance ���x−x�� ; t� �in the sense that their convolution equals
the Dirac delta function�, so that its Fourier transform is
1 /��k ;r , t�. The random term f�r+x , t+�� of Eq. �3.18� is
assumed to have zero mean and time-correlation function
given by �f�r+x , t+��f†�r+x� , t+����=��x−x� ,�−�� ;r , t�,
with

��x − x�,�;r,t� � D0n̄�r,t��x ·
 dx1b�x − x1,�;r,t�

��x1
��x1 − x�� . �3.19�

Similarly, the analog of Eq. �2.6� for the time-correlation
function C�� , t� is the relaxation equation for C�x ,� ;r , t�
��n�r+x , t+���n�r , t�, namely,

�C�x,�;r,t�
��

= D0n̄�r,t��x · 

0

�

d��
 dx1b�x − x1,� − ��;r,t�

��x1
 dx2�−1�x1,x2;t�C�x2,��;r,t� . �3.20�

D. Approximate self-consistent closure
for the local mobility b(r , t)

The generalized theory of nonequilibrium diffusion just
presented writes the relaxation of the mean value n̄�r , t�, of
the covariance ��r ,r� ; t�, and of the two-time correlation
function C�x ,� ;r , t� through Eqs. �3.6� and �3.8� �or Eq.
�3.10��, and Eq. �3.20�, in terms of the generalized mobility
b�x ,� ;r , t� or, according to Eq. �3.15�, in terms of the tem-
porally and spatially nonlocal friction function ���x ,� ;r , t�.
These equations constitute the general framework in which
approximations may be introduced to construct a closed sys-
tem of equations for the properties involved. The main pur-
pose of the present section is to determine an independent
closure relation for the local mobility b�r ; t�, needed in Eqs.
�3.6� and �3.8� �or Eq. �3.10��, in terms of n̄�r ; t� and
��r ,r� ; t�.
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This, however, will be a relatively involved process. The
reason for this is that, according to Eq. �3.17�, the local mo-
bility b�r ; t� is an integral of the nonlocal generalized mobil-
ity b�x ,� ;r , t� appearing in Eq. �3.20� for the time-
correlation function C�x ,� ;r , t�. Thus, the determination of
b�x ,� ;r , t� is essentially equivalent to the determination of
C�x ,� ;r , t�, which is intrinsically an involved and rich prob-
lem, even under ordinary equilibrium conditions. Thus, our
answer to this problem is equivalent to extending to nonequi-
librium conditions the equilibrium theoretical approach to
calculate these dynamic properties.

With this aim let us refer to Eq. �3.20� and assume that,
within the approximation of local uniformity and isotropy
introduced above, C�x ,� ;r , t�=C��x� ,� ;r , t�. We then write
the FT of this correlation function as

C��x�,�;r,t� =
1

�2
�3
 d3ke−ik·xC�k,�;r,t� , �3.21�

Denoting also the FT of b��x� ,� ;r , t� as b�k ,� ;r , t�, we can
then rewrite Eq. �3.20� in Fourier space as

�C�k,�;r,t�
��

= − k2D0n̄�r,t�

0

�

d��
 b�k,� − ��;r,t�

��−1�k;r,t�C�k,��;r,t� . �3.22�

In its turn, the mobility b�k ,� ;r , t� can be expressed in
terms of the FT ���k ,� ;r , t� of ����x� ,� ;r , t� according to
Eq. �3.15�, which in Laplace space reads

b̂�k,z;r,t� = �1 + ��̂��k,z;r,t��−1, �3.23�

with ��̂��k ,z ;r , t����̂�k ,z ;r , t� /�0 and with the hat and the
argument z meaning Laplace transform �LT�. Using this re-
sult in the Laplace-transformed version of Eq. �3.22�, we
finally get the following expression for the LT of C�k ,� ;r , t�
in terms of ����k ,z ;r , t�:

Ĉ�k,z;r,t� =
��k;r,t�

z +
k2D0n̄�r,t��−1�k;r,t�

1 + ��̂��k,z;r,t�

. �3.24�

Let us notice that we can also introduce the notation
C�k ,� ;r , t�= n̄�r , t�F�k ,� ;r , t�, with F�k ,� ;r , t� being the
nonequilibrium intermediate scattering function, whose ini-
tial value F�k ,�=0;r , t�=S�k ;r , t� defines the time-evolving
spatially local static structure factor S�k ;r , t�. With this more
familiar notation it is not difficult to recognize in Eq. �3.24�
the nonequilibrium extension of the well-known exact ex-
pression for the LT of the intermediate scattering function in
terms of the so-called irreducible memory function

��̂��k ,z ;r , t� �13,15,18�. There is, however, a deep funda-

mental difference between this expression for Ĉ�k ,z ;r , t� and
its equilibrium counterpart: the initial value ��k ;r , t�
= n̄�r ; t�S�k ;r , t� needed in Eq. �3.24� derives from the non-
equilibrium solution of the relaxation equation in Eq. �3.10�,
and not from the local equilibrium approximation
�l.e.(k ; n̄�r , t�)= �E(k ; n̄�r , t�)�−1. Of course, the general ex-
pression in Eq. �3.24� contains the conventional equilibrium
result as the particular case in which the static structure fac-

tor S�k ;r , t�=��k ;r , t� / n̄�r ; t� is given by its equilibrium
value Seq�k ; n̄eq�= �n̄eqE�k ; n̄eq��−1.

Let us mention that the equilibrium counterpart of Eq.
�3.24� can also be derived without appealing to the phenom-
enological nonlinear and nonlocal extension of Fick’s diffu-
sion equation in Eq. �3.11�. Thus, in Ref. �56� the non-
Markovian extension of Onsager’s theory �referred to there
as the “generalized Langevin equation” approach� was em-
ployed to derive the equilibrium version of Eq. �3.18�, from
which the equilibrium version of Eq. �3.24� follows. The
value of the phenomenological derivation of the nonlinear
Fick’s diffusion equation of Eq. �3.11� is that it is a natural
nonlinear extension of the more rigorously derived equilib-
rium linear theory. A similar situation arises when one con-
siders the derivation of the result analogous to Eq. �3.24� for

the self-component ĈS�k ,z ;r , t� of Ĉ�k ,z ;r , t�. This result
can also be derived in either of these two manners, both of

which lead to the following expression for ĈS�k ,z ;r , t�:

ĈS�k,z;r,t� =
1

z +
k2D0

1 + ��̂S
��k,z;r,t�

. �3.25�

In this manner, Eqs. �3.24� and �3.25� write the nonequi-
librium collective and self-time-correlation functions

Ĉ�k ,z ;r , t� and ĈS�k ,z ;r , t� in terms of the respective irre-

ducible memory functions ��̂��k ,z ;r , t� and ��̂S
��k ,z ;r , t�. At

this point, with the aim of establishing a self-consistent
scheme for the calculation of these four properties, we pro-
pose to proceed along the same lines, and to adopt the same
approximations, of the equilibrium SCGLE theory in its sim-
plest formulation �4�. Thus, we start by adopting the Vine-
yard approximation

��̂��k,z;r,t� = ��̂S
��k,z;r,t� , �3.26�

along with the factorization approximation

��̂��k,z;r,t� = ��k;r,t���̂��z;r,t� , �3.27�

in which the function ��k ;r , t� is a phenomenological “inter-
polating function” �4,21�, given by

��k;r,t� =
1

1 + � k

kc
�2 , �3.28�

with kc�2
 /d, where d is some form of distance of closest
approach. A simple empirical prescription is to choose kc as
kc=kmin, the position of the first minimum �beyond the main
peak� of the nonequilibrium static structure factor S�k ;r , t�
=��k ;r , t� / n̄�r ; t� at position r and time t.

The function ��̂��z ;r , t� in Eq. �3.27� is the Laplace
transform of the �-dependent friction function ����� ;r , t�
����� ;r , t� /�0, which can be approximated by the follow-
ing expression:
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�����;r,t� =
D0

3�2
�3n̄�r,t�

 dk k2

��S�k;r,t� − 1

S�k;r,t� �2

F�k,�;r,t�FS�k,�;r,t� .

�3.29�

The derivation of this expression follows, in a first approxi-
mation, essentially the same arguments employed in the deri-
vation of its equilibrium counterpart, explained in the origi-
nal presentation in Ref. �56� �also reviewed in Appendix B of
Ref. �21��. The main aspect that needs to be adapted refers to
the statistical distribution of the local concentration profile of
the particles around a particular tracer particle, whose mean
and covariance in the original derivation refer to the equilib-
rium distribution, whereas now they refer to the mean and
covariance of the statistical distribution representing a non-
equilibrium state. In this manner, the exact results in Eqs.
�3.24� and �3.25�, complemented with the closure relation for
the time-dependent friction function in Eq. �3.29� and the
Vineyard and the factorization approximations in Eqs.
�3.26�–�3.28�, constitute a closed system of equations that
must be solved self-consistently.

IV. FULL NONEQUILIBRIUM THEORY
AND PARTICULAR LIMITS

In summary, the nonequilibrium self-consistent general-
ized Langevin equation �NE-SCGLE� theory is defined in
terms of a system of equations for the time evolution of the
mean value n̄�r , t� and of the covariance ��r ,r� ; t� of the
fluctuations of the local concentration profile n�r , t� of col-
loidal particles, namely,

� n̄�r,t�
�t

= D0 � · b�r,t�n̄�r,t� � ���r; n̄�t�� , �4.1�

���r,r�;t�
�t

= D0 � · n̄�r,t�b�r,t� �
 dr2E�r,r2; n̄�t����r2,r�;t�

+ D0�� · n̄�r�,t�b�r�,t���
 dr2E�r�,r2; n̄�t����r2,r;t�

− 2D0 � · n̄�r,t�b�r,t� � ��r − r�� , �4.2�

with E�r ,r� ;n�� [����r ;n� /�n�r��]. We assume that we
can approximate this thermodynamic matrix as E�r ,r
+x ; n̄�t���E(�x� ; n̄�r , t�), i.e., by the thermodynamic matrix
evaluated at a uniform concentration profile with a constant
value given by the local and instantaneous concentration
n̄�r , t� at position r and time t. Then the covariance can also
be approximated as ��r ,r+x ; t�����x� ;r , t�, and the latter
equation can also be written as

���k;r,t�
�t

= − 2k2D0n̄�r,t�b�r,t�E„k; n̄�r,t�…��k;r,t�

+ 2k2D0n̄�r,t�b�r,t� , �4.3�

where ��k ;r , t���d3keik·x���x� ;r , t� and E(k ; n̄�r , t�)
��2
�−3�d3ke−ik·xE(�x� ; n̄�r , t�).

Besides the chemical equation of state �i.e., the functional
dependence of the local electrochemical potential ���r ; n̄�t��
on the concentration profile n�r , t��, the solution of these
equations requires the simultaneous determination of the lo-
cal mobility function b�r , t�, which is given, according to
Eqs. �3.17�, �3.23�, and �3.27�, by

b�r,t� = �1 + 

0

	

d������;r,t��−1

. �4.4�

The actual calculation of b�r , t� requires the solution, at each
position r and each evolution time t, of a system of equations

involving the LT Ĉ�k ,z ;r , t���0
	d�C�k ,� ;r , t� of C�k ,� ;r , t�

and of its self-component CS�k ,� ;r , t�, as well as the LT of
the �-dependent friction function ����� ;r , t�, namely,

Ĉ�k,z;r,t� =
��k;r,t�

z +
k2D0n̄�r,t��−1�k;r,t�

1 + ��k;r,t���̂��z;r,t�

, �4.5�

ĈS�k,z;r,t� =
1

z +
k2D0

1 + ��k;r,t���̂��z;r,t�

, �4.6�

�����;r,t� =
D0

3�2
�3
 dk k2���k;r,t�/n̄�r,t� − 1

��k;r,t� �2

�C�k,�;r,t�CS�k,�;r,t� , �4.7�

with ��k ;r , t� being the phenomenological “interpolating
function” given by Eq. �3.28�.

An important aspect of Eqs. �4.5�–�4.7� above refers to
their long-� �or small-z� asymptotic stationary solutions, re-
ferred to as the nonergodicity parameters of the correspond-
ing dynamic properties. These are given by

f�k;r,t� � lim
�→	

C�k,�;r,t�
��k;r,t�

=
��k;r,t���k;r,t�

��k;r,t���k;r,t� + k2n̄�r,t���r,t�
, �4.8�

fS�k;r,t� � lim
�→	

CS�k,�;r,t� =
��k;r,t�

��k;r,t� + k2��r,t�
,

�4.9�

where the �spatially and temporally dependent� squared lo-
calization length ��r , t� is the solution of
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1

��r,t�
=

1

6
2

0

	

dk k4 ���k;r,t�/n̄�r,t� − 1�2�2�k;r,t�
���k;r,t���k;r,t� + k2n̄�r,t���r,t�����k;r,t� + k2��r,t��

. �4.10�

If the solution ��r , t� of the latter equation is infinite, we can
say that at that position r and waiting time t the system still
remains ergodic, but if it is finite, we say that the system
becomes dynamically arrested.

Particular cases and limits

Equations �4.1�–�4.10� constitute the full nonequilibrium
SCGLE theory. Let us recall that C�k ,� ;r , t�
= n̄�r , t�F�k ,� ;r , t�, with F�k ,� ;r , t� being the nonequilib-
rium intermediate scattering function, whose initial value
F�k ,�=0;r , t�=S�k ;r , t� is the time-evolving spatially vary-
ing static structure factor S�k ;r , t�=��k ;r , t� / n̄�r , t�. With
this notation, Eqs. �4.1�–�4.10� will probably appear more
familiar. In fact, it is not difficult to recognize in these gen-
eral equations a number of relevant concepts when adequate
limits or cases are considered, some of which are discussed
in what follows.

The first obvious general limit to discuss refers to the long
evolution-time limit t→	. Assuming static external fields
and static thermodynamic constraints, one expects that in this
limit the solution of Eqs. �4.1� and �4.3� will converge to a
stationary state, denoted by n̄ss�r� and �ss�k ;r�. This station-
ary state will be a thermodynamic equilibrium state if
��n̄ss�r� /�t� and ���ss�k ;r� /�t� vanish due to the fact that the
two equilibrium conditions, ���r ; n̄ss�=0 and
E(k ; n̄ss�r�)�ss�k ;r�=1, have been attained. Other stationary
solutions of Eqs. �4.1�–�4.3� might, however, exist in which
the derivatives ��n̄ss�r� /�t� and ���ss�k ;r� /�t� vanish due to
vanishing of the local mobility b�r , t→	�, a condition for
dynamic arrest. We may, however, disregard the conse-
quences of this second possibility and assume that the system
will always be able to reach its thermodynamic equilibrium
state. Furthermore, let us assume that the system is not sub-
jected to external fields, so that n̄ss�r�= n̄b and �ss�k ;r�
= n̄bS�k ;� , n̄b�, with S�k ;� , n̄b� being the equilibrium static
structure factor of the homogeneous system. Under these
conditions �i.e., full equilibration and spatial uniformity�,
from Eqs. �4.5�–�4.7� we recover the equilibrium version of
the SCGLE theory �1,4�, and from Eqs. �4.8�–�4.10� we re-
cover the corresponding so-called bifurcation equations �4�,
using the terminology of MCT �29�.

The full nonequilibrium SCGLE equations �Eqs.
�3.6�–�3.29� and �4.1�–�4.10�� can be solved only after sev-
eral elements have been specified. The most basic of them
refers to the nature of the system, defined by the pair inter-
action potential u�r�, which determines the nonideal contri-
bution to the electrochemical potential. This contribution is
represented by the term −c�r ;n� of the chemical equation of
state, written as ���r ;n�=������+ln n�r�−c�r ;n�+�
�r�.
The functional dependence of c�r ;n� on the concentration
profile n�r� is a second fundamental element that must be

specified. One possibility is to propose a theoretical approxi-
mation for this dependence, which in the language of
density-functional theory is actually equivalent to proposing
an approximate free-energy functional. For example, within
the simplest approximation, referred to as the Debye-Hückel
or random phase approximation, c�r ;n� is written as
c�RPA��r ;n�=−��d3r�u��r−r���n�r�� �which also defines an
approximation for the thermodynamic matrix, namely,
E�RPA��r ,r� ;n�=��r−r�� /n�r�+u��r−r����.

A third element to specify refers to the external fields and
the thermodynamic constraints to which the system is sub-
jected. We have assumed so far that the external fields are
static and represented by 
�r�, whereas the thermodynamic
constraints consists of keeping the temperature field uniform,
T�r , t�=T�t� �=1 /kB��t��, but not necessarily constant. There
is, however, no fundamental reason why we have to restrict
ourselves to these conditions. In fact, the general equations
of the NE-SCGLE theory above can be used, within the
range of validity of the underlying assumptions, to describe
the response of the system to prescribed time-dependent ex-
ternal fields 
�r , t� or programmed thermal constraints de-
scribed by the time-dependent temperature T�t�. This would
be done by just including this possible time dependence in
Eq. �3.6� through the electrochemical potential ��r , t ;n�
=��(T�t�)+kBT�t�ln n�r�−kBT�t�c�r ;n�+
�r , t�. Most com-
monly, however, we assume that such time-dependent fields
and constraints could be used to drive the system to a pre-
scribed initial state, described by the mean value n̄0�r� and
covariance �0�k ;r�, for then programming the field and the
temperature to remain constant afterward, 
�r , t�=
�r� and
T�t�=T for t�0. The present theory then describes how the
system relaxes to its final equilibrium state whose mean pro-
file and covariance are n̄eq�r� and �eq�k ;r�.

Describing this response at the level of the mean local
concentration profile n̄�r , t� is precisely the aim of the re-
cently developed DDFT �10,60�. To establish direct contact
with this theory, let us consider the limit in which we neglect
the friction effects embodied in ����� ;r , t� by setting
b�r , t�=1 in our main equations, namely, Eqs. �4.1� and �4.3�.
We notice that under these conditions Eq. �4.1� corresponds
to the central equation of DDFT, which has been applied to a
variety of systems, including the description of the irrevers-
ible sedimentation of real and simulated colloidal suspen-
sions �61�. We should also mention that Tokuyama et al.
�64,65� proposed an equation for the irreversible relaxation
of n̄�r , t� which differs from such simplified version of our
Eq. �4.1� only in that it neglects external forces as well as the
effects of the interparticle direct interactions embodied in the
nonideal part of the electrochemical potential, i.e., it sets
c�r ;n�t��=0 in Eq. �3.1�. In contrast, Tokuyama’s theory
does include some effects of the direct interparticle interac-
tions, as well as of hydrodynamic interactions, on the matrix
L�r ,r� ; t� �see Eq. �3.7��, through the replacement of the

PEDRO RAMÍREZ-GONZÁLEZ AND MAGDALENO MEDINA-NOYOLA PHYSICAL REVIEW E 82, 061503 �2010�

061503-10



diffusion coefficient D0 by the short-time self-diffusion co-
efficient DS(n̄�r ; t�) that depends as an ordinary function on
the local concentration. Just like DDFT, Tokuyama’s theory
provides a description of the spatially inhomogeneous relax-
ation of the local concentration profile. Furthermore, it seems
to predict dynamic arrest for hard-sphere dispersions. The
current versions of dynamic density-functional theory, on the
other hand, cannot predict dynamic arrest phenomena be-
cause of the simplifying approximation b�r , t�=1.

The theory proposed in the present work shares some el-
ements with both of these theoretical developments, in the
sense that it is also aimed at describing the nonequilibrium
relaxation of the local equilibrium profile. We consider, how-
ever, that the description of the irreversible relaxation of the
macroscopic state of the system is not complete without the
description of the relaxation of the covariance matrix
��r ,r� ; t� in Eq. �3.8� �or Eq. �4.3�� and without the inclusion
of the effects embodied in the local mobility function
b�r , t��1, i.e., in the friction function ����� ;r , t��0. In this
regard it is also important to point out that in the limit b�t�
→1 of Eq. �4.3� one can recognize an equation that has been
fundamental in the description of the early stage of spinodal
decomposition �11,66–68�. For example, with the additional
small-wave-vector approximation for E f

eq�k�, namely, E f
eq�k�

�E0+E2k2+E4k4, this equation is employed in the descrip-
tion of the early stages of spinodal decomposition �see, for
example, Eq. �2.11� of Ref. �11�, in which E4=0, or Eq. �23�
of Ref. �68��.

Another particular limiting condition that merits discus-
sion, now in the context of the complete theory, corresponds
to the quasistatic process, characterized by a trajectory
n̄l.e.�r , t� and �l.e.�k ;r , t� that satisfies what we refer to as the
local equilibrium approximation. In this idealized process the
system is driven from a given initial equilibrium state de-
scribed by n̄0�r� and �0�k ;r� to a final equilibrium state de-
scribed by n̄eq�r� and �eq�k ;r� by extremely slow time-
dependent fields and constraints in such a manner that
��n̄l.e.�r , t� /�t� and ���l.e.�k ;r , t� /�t� virtually vanish due to
the fact that at each time t the system is allowed to approxi-
mately attain the two equilibrium conditions ���r ; n̄l.e.�=0
and �l.e.�k ;r , t�=E−1(k ; n̄l.e.�r , t�). A quasistatic process, how-
ever, is an idealized and rather unrealistic concept, at least in
the limit of small wave vectors, in which the relaxation times
diverge as k−2 �see Eq. �4.3��. In fact, far more interesting is
the opposite limit, in which the system, initially at equilib-
rium with a static field 
�0��r� and temperature T�0�, must
adjust itself in response to an instantaneous change of these
control parameters to new values 
�f��r� and T�f�, according
to the “program” described by 
�r , t�=
�0��r���−t�
+
�f��r���t� and T�t�=T�0���−t�+T�f���t�, with ��t� being
Heaviside’s step function.

Under the conditions described by this instantaneous
quench program the predicted nonequilibrium trajectory
n̄�r , t� and ��k ;r , t� will spontaneously reach the new ther-
modynamic equilibrium state n̄eq�r� and �eq�k ;r�, unless dy-
namic arrest conditions arise along this nonequilibrium tra-
jectory. This is, of course, the most fascinating possibility,
and it was the main motivation to carry out the present non-
equilibrium extension of the SCGLE theory. A simple man-
ner to monitor if this possibility will actually interfere with

the process of full equilibration is to solve Eq. �4.10� for the
squared localization length �eq�r� when n̄�r , t� and ��k ;r , t�
are given their expected equilibrium values n̄eq�r� and
�eq�k ;r�. If the resulting value of the dynamic order param-
eter �eq�r� turns out to be finite for r in some portion of the
system, we should expected the system to become dynami-
cally arrested at least in that region. The possible scenarios in
which this might be predicted to occur are hidden in the full
NE-SCGLE equations above and in the specific systems and
conditions that might be considered. In order to explore how
reasonable these expectations may be, in a separate work
�12�, we apply for the first time the full NE-SCGLE theory
above to the quantitative description of the response of a
simple model glass-forming colloidal liquid subjected to a
spatially homogeneous instantaneous quench to conditions
where dynamic arrest is expected on the basis of the proce-
dure just outlined.

V. DISCUSSION AND SUMMARY

In this paper we have proposed the extension of the self-
consistent generalized Langevin equation �SCGLE� theory of
colloid dynamics to general nonequilibrium conditions. This
extension describes in principle the process in which the
spontaneous evolution of the system toward its thermody-
namic equilibrium state could be interrupted by the appear-
ance of conditions for dynamic arrest. The main fundamental
basis of this general self-consistent theory was provided by
the general principles of Onsager’s theory of equilibrium
thermal fluctuations or, better, by the extension of Onsager’s
theory to nonstationary and non-Markovian conditions �57�,
whose review was the subject of Sec. II. Clearly, this ex-
tended theory of irreversible processes is in principle appli-
cable to other relaxation phenomena outside the realm of
colloid dynamics.

The application of this extension of Onsager’s theory to
the description of the irreversible evolution of the structure
and dynamics of a colloidal liquid was carried out in Sec. III.
The resulting nonequilibrium theory of colloid dynamics
contains as particular cases a number of relevant limiting
conditions. For example, the evolution equation for the mean
profile n̄�r , t� is found to contain the fundamental equation of
dynamic density-functional theory as a particular limit,
whereas the basic equation employed to describe the evolu-
tion of the static structure factor in the early stages of the
process of spinodal decomposition can be recognized as a
particular limit of the evolution equation for the covariance.
The general theory, however, also allows its application to
the description of the irreversible processes, such as aging,
associated with dynamic arrest transitions. In particular, it
should in principle be suitable to describe processes of dy-
namically arrested spinodal decomposition.

Let us finally notice that the general nonequilibrium
theory of dynamic arrest has built in a very natural manner
the description of static and dynamic heterogeneities, since at
any evolution time all the relevant static and dynamic prop-
erties are defined at each point in space and cannot a priori
be assumed spatially homogeneous. As a zeroth-order ap-
proximation, however, one may simplify the full self-
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consistent theory assuming spatial homogeneity, as it is done
in the accompanying paper �12�, and for some purposes this
simplifying approximation may suffice to provide an accept-
able first-order scenario of important nonequilibrium pro-
cesses.

Since the final value of this general theoretical proposal
depends on its actual predictive power, in the accompanying
paper we illustrate the practical and concrete use of the
present nonequilibrium theory with a quantitative application
to the prediction of the aging processes occurring in a sud-
denly quenched colloidal liquid, whose static structure factor
and its Van Hove function evolve irreversibly from the initial
conditions before the quench to a final dynamically arrested
state. As reported there, the comparison of the corresponding
numerical results with available simulation data seem highly
encouraging.
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APPENDIX: FUNDAMENTAL THERMODYNAMIC
FRAMEWORK

This appendix summarizes the essential concepts of the
thermodynamic theory of inhomogeneous fluids as a straight-
forward application of the first and second laws of classical
thermodynamics �58� to a system that cannot be spatially
homogeneous. Augmented with elementary concepts of the
thermodynamic theory of fluctuations �48,58,62,63�, the re-
sulting purely phenomenological description involves some
basic equations that also appear in microscopic statistical-
mechanical theories, such as density-functional theory of in-
homogeneous fluids �59�.

The first law of thermodynamics states that, in a macro-
scopic system formed by N particles in a volume V, the total
internal energy E is a state function, whereas the second law
postulates the existence of the entropy S, another state func-
tion with the property that a closed system will spontane-
ously search for the state with the maximum S, and this state
is referred to as the thermodynamic equilibrium state. The
functional relationship between the entropy and the other
extensive variables E, N, and V is referred to as the funda-
mental thermodynamic relation �FTR� of the system, written
as S=S�E ,N ,V�. The presence of external fields, however,
may cause spatial inhomogeneities in the distribution of mat-
ter and energy. The description of the possible thermody-
namic states of this system then requires more information
than that contained in the value of the total properties E, N,
and V.

1. Thermodynamic state space of a nonuniform system

For this reason we mentally partition the volume V in a
number C of smaller portions �or cells�, whose internal en-

ergy, particle number, and volume are denoted by E�r�, N�r�,
and V�r�, respectively, with r=1,2 , . . . ,C. Then, the funda-
mental thermodynamic relation of this system reads S
=S�E ,N ,V�, where E, N, and V are C-dimensional vectors
with components E�r�, N�r�, and V�r� �r=1,2 , . . . ,C�. For the
sake of simplicity let us assume that the volumes V�r� are all
equal, V�r�=�V=V /C, and remain fixed, so that only the
variables �E ,N� are needed to define a thermodynamic state.
Specific values given to each of the components N�r� of the
vector N define a particle number profile, and specific values
of the components E�r� define a specific energy profile E. For
notational convenience let us also introduce the
M-component vector a �with M =2C� as a��E ,N�. Then, a
specific particle number profile N and a specific energy pro-
file E define a specific thermodynamic profile a. The set of
all possible thermodynamic profiles, which we refer to as the
entire thermodynamic state space T, is then identical to the
set of all particle and energy profiles that result from giving
the components E�r� ,N�r� any value in the ranges 0�E�r�

�	 and 0�N�r��	. The fundamental thermodynamic rela-
tion of this system, which then reads

S = S�E,N� , �A1�

assigns a value of the entropy to any possible thermody-
namic profile �E ,N�=a�T.

None of the elements of the state space T of a given
system is a priori an equilibrium or nonequilibrium state.
The second law of thermodynamics can distinguish which
element of T is the thermodynamic equilibrium state only
after specifying �i� the system, �ii� the external fields acting
on its constituent particles, and �iii� the global thermody-
namic constraints �such as isolation or contact with reser-
voirs� imposed on the system. The system is defined by
specifying the pair interaction energy u�r,r�� between two of
its particles located at cells r and r�. The given array of
external fields acting on the particles is described by the
corresponding total potential energy of one particle at cell r,
which we shall denote by 
�r�. We shall refer to the
C-dimensional vector � with components 
�r� �r
=1,2 , . . . ,C� as an external potential profile.

The conceptually simplest and most important global
thermodynamic constraint that may be imposed on the sys-
tem is total isolation, which prevents the system �of fixed
total volume V� from exchanging matter and energy with
external reservoirs. Thus, the total energy E and particle
number N are constant,



r=1

C

E�r� = E �=const� , �A2�



r=1

C

N�r� = N �=const� . �A3�

We may classify the elements of the entire thermodynamic
state space T of a given system according to the possible
closure conditions, i.e., according to the specific values of
�E ,N ,V�. Thus, each specific value of �E ,N ,V� defines a
specific subspace ��E ,N ,V��T, which contains all the ther-
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modynamic profiles a= �E ,N�, consistent with the referred
isolation condition. We may then say that any two subspaces
��E ,N ,V� and ��E� ,N� ,V�� are disjoint unless E=E�, N
=N�, and V=V�, and that the union of the subspaces
��E ,N ,V� for all possible values of �E ,N ,V� is identical to
the entire thermodynamic state space T. The second law of
thermodynamics then states that, for a fixed external poten-
tial profile �, an isolated system will spontaneously relax
from any arbitrary thermodynamic profile �E ,N�
���E ,N ,V� toward the particular profile �Eeq ,Neq� that
maximizes the entropy within the subspace ��E ,N ,V�. This
means that each possible profile � will identify a member of
��E ,N ,V� as “its” corresponding equilibrium profile
�Eeq ,Neq�.

2. Equations of state and conditions
for thermodynamic equilibrium

The fundamental thermodynamic relation S=S�E ,N� can
also be written in its differential form as

dS�E,N�/kB = 

r=1

C

��r��E,N�dE�r� − 

r=1

C

���r��E,N�dN�r�,

�A4�

where “��r�” and “���r�” denote the functions of the vari-
ables E and N defined as

��r� = ��r��E,N� �
��S�E,N�/kB�

�E�r� , �A5�

���r� = ���r��E,N� � −
��S�E,N�/kB�

�N�r� . �A6�

For simplicity we may denote by �̃ the C-dimensional vector

with components ��r� and by ��˜ the C-dimensional vector
with components ���r�, so that, for example, Eq. �A4� can

also be written as dS�E ,N� /kB= �̃�E ,N� ·dE−��˜�E ,N� ·dN.
Equations �A5� and �A6� are, respectively, the thermal and
the chemical equations of state �58�. Equilibrium states will
satisfy the extremum condition dS�Eeq ,Neq�=0 which, to-
gether with Eqs. �A2� and �A3�, leads to the following set of
2C equations for the 2C variables �Eeq ,Neq�:

��r��Eeq,Neq� = � �=const� , �A7�

���r��Eeq,Neq� = �� �=const� , �A8�

for r=1,2 , . . . ,C. Clearly, these are merely the conditions for
internal thermodynamic equilibrium, which require that the
intensive parameters do not vary from cell to cell.

3. Thermodynamic theory of fluctuations:
Covariance and stability matrices

The equilibrium value of the thermodynamic profile aeq
��Eeq ,Neq� is then the solution of the extremum condition
in Eqs. �A7� and �A8�. There are, however, instantaneous
departures from such an equilibrium profile, whose proper-

ties can only be described in statistical terms. This then
means that the thermodynamic profile a= �E ,N� must be re-
garded as a M-component random vector, subject to a prob-
ability distribution Peq�a� whose mean value ā is the equi-
librium value aeq. Thus, we must now recognize that the
macroscopic state of our system cannot be described simply
by indicating the mean value ā=aeq; instead, it must be de-
scribed by the full probability distribution function P�a�
given, according to the thermodynamic theory of fluctuations
�48,58,62,63�, by the Boltzmann-Planck expression Peq�a�
=exp��S�a�−S�aeq�� /kB	. The M �M covariance matrix �ij

eq

���a���a�† of this distribution function, with elements
defined as

�ij
eq = �ai�aj � 


a
Peq�a��ai − ai

eq��aj − aj
eq� ,

i, j = 1,2, . . . ,M , �A9�

is given by the following exact and general result:

�eq · Eeq = I , �A10�

where I is the M �M identity matrix and Eeq is the equilib-
rium stability matrix, defined as

Eij
eq � −

1

kB
� �2S�a�

�ai � aj
�

a=aeq
. �A11�

At any arbitrary state a �not necessarily an equilibrium state�
one can define the second differential of the entropy as
d2S�a� /kB=−da† ·E�a� ·da, with E�a� being the M �M ma-
trix defined as

Eij�a� � −
1

kB
� �2S�a�

�ai � aj
� = − � �Fi�a�

�aj
� . �A12�

In the last member of this equation, Fi�a� is the thermody-
namically conjugate variable of the extensive variable ai, de-
fined as Fi�a�=kB

−1��S�a� /�ai�. The conjugate variables
Fi�a� and the thermodynamic matrix Eij�a� are thus defined
at any thermodynamic state a. It is, however, only when the
state a is an equilibrium state that these state functions have
an important extremum and stability significance. In particu-
lar, it is only under conditions of thermodynamic equilibrium
that the matrix E is the inverse of the covariance matrix,
according to Eqs. �A10� and �A11�.

4. Legendre-transformed fundamental thermodynamic relation

Just like in ordinary classical thermodynamics, under
some circumstances one may prefer to express all the
previous results not in terms of �E ,N� as independent state

variables, but in terms of ��̃ ,N�. Regarding the internal
equilibrium conditions �Eqs. �A7� and �A8��, this amounts
to eliminating the variables E�r� from this set of 2C equa-
tions by first solving the thermal-equilibrium condition
��r��E ,N�=�R for E, and then substituting the solution,
denoted as Eeq

�r���R ,N�, in Eq. �A8�. This leads to C equa-
tions for N�r��r=1,2 , . . . ,c�, namely, ���r���R ;N�
����r�[Eeq��R ;N� ,N]=�R�R �r=1,2 , . . . ,C�, where the
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functions ���r��� ;N� and ���r��E ,N� differ from each other
in the set of variables they depend on. This procedure is done
more formally by defining the Legendre transformation of
the fundamental thermodynamic relation S=S�E ,N�, which

reads F=F��̃ ,N��S�E ,N� /kB− �̃ ·E. The “thermodynamic

potential” F��̃ ,N� now plays the role of the entropy S but in
the thermodynamic state space spanned by the variables

��̃ ,N� and is related with the Helmholtz free energy A by

F��̃ ,N�=−�A.
This representation is most convenient under conditions

in which the N-particle system is in contact with a thermal
reservoir �in our case the supporting solvent� that keeps tem-
perature constant and uniform, in which the case system is
constrained to the thermodynamic state subspace T��R ;N ,V�
defined by ��̃eq ,N�, with �eq

�r�=�R for all cells r. This means
that within this constrained thermodynamic subspace
the FTR can be written in its differential form as dF
=−�R�̃��R ;N� ·dN, and the chemical equation of state ��r�

=��r���R ;N� now expresses the components of the vector �̃
as a function of the profile N and of the thermal reservoir
parameter �R, which may then be considered as a control
parameter. The main advantage of this representation is the
simplification of the equilibrium conditions in Eqs. �A7� and
�A8�. Thus, the equilibrium concentration profile Neq is now
determined by the condition that the electrochemical poten-
tial remains spatially uniform, i.e.,

���r��Neq;�� = �� �=const� . �A13�

This representation also simplifies the discussion of the fluc-
tuations �N around the equilibrium concentration profile Neq.
To see this, let us write Eq. �A10� more explicitly as

��E�E† �E�N†

�N�E† �N�N†��− � ��̃�E,N�
�E

� − � ��̃�E,N�
�N

�
� ���˜�E,N�

�E
� � ���˜�E,N�

�N
� �

�eq�

= �I 0

0 I
� , �A14�

where the subindex “�eq�” means that the thermodynamic
derivatives in this equation are evaluated at �E ,N�
= �Eeq ,Neq�. By inverting the thermodynamic matrix, along
with some straightforward thermodynamic algebra, one can
show that the covariance �N�N† satisfies

�N�N† · � ���˜�N;��
�N

�
N=Neq

= I . �A15�

This result, however, is again Eq. �A10� with a=N and cor-
responding to the global constraint of contact with a thermal
reservoir that keeps temperature constant and uniform.
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