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The non-equilibrium self-consistent generalized Langevin equation theory of irreversible processes
in glass-forming liquids [P. Ramírez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503
(2010)] is extended here to multi-component systems. The resulting theory describes the statis-
tical properties of the instantaneous local particle concentration profiles nα(r, t) of species α in
terms of the coupled time-evolution equations for the mean value nα(r, t) and for the covari-
ance σαβ(r, r′; t) ≡ δnα(r, t)δnβ(r′, t) of the fluctuations δnα(r, t) = nα(r, t) − nα(r, t). As in the
monocomponent case, these two coarse-grained equations involve a local mobility function bα(r,
t) for each species, written in terms of the memory function of the two-time correlation function
Cαβ(r, r′; t, t ′) ≡ δnα(r, t)δnβ(r′, t ′). If the system is constrained to remain spatially uniform and
subjected to a non-equilibrium preparation protocol described by a given temperature and com-
position change program T(t) and nα(t), these equations predict the irreversible structural relax-
ation of the partial static structure factors Sαβ(k; t) and of the (collective and self) intermediate
scattering functions Fαβ (k, τ ; t) and FS

αβ(k, τ ; t). We illustrate the applicability of the resulting
theory with two examples involving simple model mixtures subjected to an instantaneous temper-
ature quench: an electroneutral binary mixture of equally sized and oppositely charged hard-spheres,
and a binary mixture of soft-spheres of moderate size-asymmetry. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4882356]

I. INTRODUCTION

The fundamental understanding of materials in dynami-
cally arrested states, such as glasses and gels, is a relevant sub-
ject of statistical physics.1–3 The main fundamental challenge
posed by these materials is their inability to reach thermody-
namic equilibrium within experimental times and the fact that
their properties depend on the protocol of preparation. Under-
standing the origin of this behavior falls outside the realm of
classical and statistical thermodynamics, and must unavoid-
ably be addressed from the perspective of a non-equilibrium
theory.4–6 In fact, a major challenge for statistical physics is
to develop a fundamental theory that predicts the properties of
glasses and gels in terms not only of the intermolecular forces
and applied external fields, but also in terms of the protocol
of preparation of the material.

Truly first-principles theoretical frameworks leading to
quantitative predictions of the dynamic properties of liq-
uids near their dynamic arrest transition are the conven-
tional mode coupling theory (MCT)7, 8 and the more recently
proposed self-consistent generalized Langevin equation (SC-
GLE) theory of dynamic arrest.9–12 In their conventional form
both MCT and the SCGLE theory are meant to describe
the dynamics of fully equilibrated liquids. Hence, the phe-
nomenology of the transient time-dependent processes occur-
ring during the equilibration process, including the aging of
glassy systems, falls completely out of the scope of these

a)Also at Biology and Soft Matter Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831, USA.

equilibrium theories. Thus, while their application to specific
idealized or experimental model systems is a permanently rel-
evant subject, it is also important to attempt their extension
to the description of the non-stationary non-equilibrium pro-
cesses characteristic of dynamically arrested states, including
aging, the dynamic fingerprint of glassy systems.

To illustrate these concepts in a more concrete fash-
ion, let us consider a glass-forming s-component liquid mix-
ture formed by Nα identical spherical particles of species α

= 1, 2, . . . , s in a volume V (i.e., mean number densities
nα = Nα/V ), which interact through pairwise potentials that
we denote by uαβ(r). Assume that in the absence of exter-
nal fields this system is initially prepared in an equilibrium
state corresponding to an initial temperature Ti, in which
the partial static structure factors are S

(0)
αβ (k) = S

eq

αβ(k; n, Ti),
with n = (n1, n2, . . . ns). In the simplest idealized quench
experiment, at the time t = 0 the temperature is instanta-
neously and discontinuously changed to a new value Tf. Let
us assume that along the process that follows the quench,
the mean local densities are constrained to remain uniform
and constant, i.e., that nα(r, t) = nα at any position r in
the volume V and at any time t > 0, and similarly for
the imposed temperature, T(r, t) = Tf. One concrete ex-
ample of such idealized experiment can be consulted in
Ref. 13, which describes the irreversible evolution of the so-
called “restricted primitive model” (RPM) (an electroneutral
binary mixture of equally sized and oppositely charged hard-
spheres) after a temperature quench.

The relevant question then refers to the value of the
partial static structure factors Sαβ (k; t) for t > 0, and to

0021-9606/2014/140(23)/234501/14/$30.00 © 2014 AIP Publishing LLC140, 234501-1
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the evolution of the dynamic properties of the system along
this process. The referred dynamic properties can be de-
scribed in terms of the relaxation of the fluctuations δnα(r,
t) of the local concentration nα(r, t) of colloidal parti-
cles around its bulk equilibrium value nα . The average de-
cay of δnα(r, t) is described by the two-time correlation
function Fαβ(k, τ ; t) ≡ N−1δnα(k, t + τ )δnβ(−k, t) of the
Fourier transform (FT) δnα(k, t) of the fluctuations δnα(r,
t), whose equal-time limit is Sαβ(k; t) ≡ Fαβ(k, τ = 0; t)
= N−1δnα(k, t)δnβ(−k, t). We refer to the time τ as the cor-
relation time, and the overline refers to the average over the
probability distribution of the non-equilibrium ensemble that
governs the statistical properties of δnα(r, t) during the evolu-
tion time t. This ensemble will surely coincide with an equi-
librium ensemble only in the limit t → ∞, provided that no
dynamic arrest condition appears along the process. After the
sudden temperature change at t = 0 has occurred the system
evolves spontaneously, searching for its new thermodynamic
equilibrium state, at which the static structure factor should
be S

eq

αβ(k; n, Tf ). If the end state, however, is a dynamically
arrested state (a glass or a gel), the system may never be able
to reach this equilibrium state within experimental times. We
then also refer to the evolution time t as the waiting or aging
time.14, 15

The dependence of Sαβ (k; t) and Fαβ(k, τ ; t) on t char-
acterizes the non-equilibrium evolution of the system, whose
quantitative theoretical first-principles description is the main
goal and most relevant challenge of a non-equilibrium statisti-
cal mechanical theory of the glass transition. In an attempt to
face this challenge, the SCGLE theory has recently been ex-
tended to describe non-stationary non-equilibrium processes
in glass-forming liquids.16–18 The resulting non-equilibrium
theory, referred to as the non-equilibrium self-consistent gen-
eralized Langevin equation (NE-SCGLE) theory, was de-
rived within the fundamental framework provided by a non-
stationary extension16 of Onsager’s theory of time-dependent
thermal fluctuations (for which we mean the general and fun-
damental laws of linear irreversible thermodynamics and the
corresponding stochastic theory of thermal fluctuations, as
stated by Onsager19, 20 and by Onsager and Machlup,21, 22 re-
spectively, with an adequate extension23, 24 to allow for the
description of memory effects). The NE-SCGLE theory thus
derived is aimed at describing non-equilibrium relaxation
phenomena in general, and irreversible aging processes as-
sociated with the glass and the gel transitions13, 25–28 in
particular. A practical and concrete use of the resulting
non-equilibrium theory was illustrated in Refs. 17 and 18
with quantitative applications to the prediction of the aging
processes occurring in a suddenly quenched colloidal liquid.

In its present form, however, the NE-SCGLE theory only
refers to monocomponent systems. This excludes its direct
comparison with the results of important real and simulated
experiments involving intrinsically multi-component glass-
forming systems such as, for example, the interesting dy-
namic arrest phenomena observed in certain specific colloidal
mixtures13, 29 or metallic melts.30 Thus, it is important to ex-
tend and apply this non-equilibrium theory to multicompo-
nent systems, and the work reported here constitutes the first
step in this direction. Here we extend the fundamental NE-

SCGLE equations to describe the irreversible evolution of the
static and dynamic properties of a multi-component Brownian
liquid, as it evolves towards its thermodynamic equilibrium
state. The ultimate goal is, however to describe the kinetics of
these irreversible processes, particularly when full equilibra-
tion is prevented by conditions of dynamic arrest.

In this paper, the first objective is to present an exten-
sion of non-equilibrium Onsager-Machlup theory of thermal
fluctuations to mixtures and the corresponding adaptation of
the NE-SCGLE theory. However, this theoretical discussion
is somewhat conventional and represents a direct extension
of the equations given in Ref. 16. In any event, this discus-
sion was placed in Appendices A and B. But for more prac-
tically oriented reader might consider read Sec. II, in which
the closed system of equations (2.10)–(2.18) summarizes the
corresponding simpler version of the NE-SCGLE theory of
equilibration and aging in mixtures. In order to illustrate the
practical applicability of this resulting multi-component ver-
sion of NE-SCGLE theory, in Sec. III we describe its applica-
tion in two simple model systems, namely, an electroneutral
binary mixture of equally sized and oppositely charged hard
spheres and a binary hard sphere mixture of moderately dif-
ferent sizes. In these concrete exercises we solve numerically
the full self consistent system of dynamic equations for an in-
stantaneous quench process within the constraint that system
remains amorphous and spatially uniform. The intention of
these illustrative examples is to provide a reliable reference
for the eventual application of this non-equilibrium theory to
other systems or to different processes. In Sec. IV we summa-
rize the main conclusions and perspectives of this work.

II. NE-SCGLE FOR MIXTURES

The fundamental principles and theoretical derivations
presented in this paper are a straightforward extension of
those in the original proposal16 of the NE-SCGLE theory.
Thus, in principle it should suffice to indicate the main con-
ceptual issues and the notation involved in its extension to
mixtures, with a summary of the resulting NE-SCGLE equa-
tions. The derivation of these equations involve two distinct
levels of generality. The first corresponds to the abstract and
general description provided by the non-stationary version
of Onsager-Machlup theory of thermal fluctuations.16 This
theory, cast in terms of a set of macroscopic state variables
generically denoted by (a1, a2, . . . , aM) ≡ a, is summarized
for completeness in Appendix A. The second corresponds to
the description of diffusive processes in the specific context
of liquid mixtures, where the abstract objects in Onsager’s
theory take a concrete meaning. Besides the notational com-
plication of introducing the species label α = 1, 2, . . . , s,
already employed in the introduction, the corresponding ar-
guments and derivations are identical to those in Sec. III of
Ref. 16. Thus, in the first part of this section we shall only
summarize the main results that follow from applying the
non-stationary Onsager-Machlup theory to the context of col-
loidal mixtures. These results provide the basis of the most
general non-equilibrium SCGLE theory of irreversible pro-
cesses in liquid mixtures. In the second part of this section
we shall discuss a more restricted version of these equations,
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which describe the non-equilibrium structural relaxation of
liquid mixtures constrained to evolve irreversibly under iso-
choric and spatially homogeneous conditions.

A. Time evolution equations for nα(r, t) and σαβ (r, r′; t)

Just like in the monocomponent case, the starting point
in applying the non-stationary Onsager-Machlup theory re-
viewed in Appendices A and B is the identification of the
state variables (a1, a2, . . . , aM), with the number of parti-
cles N (r)

α (=1, 2, . . . , s) of particles of species α in the rth
cell of a set of C cells in which we mentally partition the
volume V containing the system. In the continuum limit,
C → ∞, the variable N (r)

α /(V/C) becomes the instantaneous
local concentration nα(r, t) of particles of species α in the
cell at spatial position r. The next step is the identification of
the most general phenomenological time-evolution equation
for the mean value of these state variables (corresponding to
Eq. (A1) of Appendix A). In our case this is the most gen-
eral non-linear, but spatially and temporally local, diffusion
equation provided by Fick’s law, which reads4, 5

∂nα(r, t)
∂t

= D0
α∇ · bα(r, t)nα(r, t)∇βμα[r; n(t)]. (2.1)

In this equation μα[r; n] is the local electrochemical potential
at position r, written in general, in units of the thermal energy
kBT = β−1, as33

βμα[r; n] = βμin
α [r; n] + βψα(r)

≡ βμ∗
α(β) + ln nα(r) − cα[r; n] + βψα(r), (2.2)

where ψα(r) is the potential of the external field acting on
a particle of species α at position r. The first two terms of
this definition of μin

α [r; n], namely, βμ∗
α(β) + ln nα(r), are the

ideal gas contribution to the chemical potential, whereas the
term −cα[r; n] contains the deviations from ideal behavior
due to interparticle interactions. In Eq. (2.1), D0

α is the dif-
fusion coefficient of the colloidal particles of species α in
the absence of direct (i.e., conservative) interactions between
them and bα(r, t) is a local reduced mobility, to be determined
later.

The following step is the derivation of the time-evolution
equation for the covariance σαβ(r, r′; t) ≡ δnα(r, t)δnβ(r′, t)
of the fluctuations δnα(r, t) = nα(r, t) − nα(r, t), corre-
sponding to Eq. (A2) of Appendix A. For this, let us first iden-
tify the thermodynamic matrix of Eq. (A4) with the functional
derivative

Eαβ[r, r′; n] ≡
[
δβμα[r; n]

δnβ(r′)

]
, (2.3)

which, using Eq. (2.2), can also be written in general as

Eαβ[r, r′; n] = δ(r − r′)/nα(r) − c
(2)
αβ [r, r′; n], (2.4)

where c
(2)
αβ [r, r′; n] ≡ (δcα[r; n]/δnβ(r′)) is the direct correla-

tion function.
Linearizing Eq. (2.1) we can now identify the ma-

trix Lαβ[r, r′; n(t)] of Onsager kinetic coefficients accord-
ing to Eq. (A3) as Lαβ[r, r′; n(t)] = −δαβD0

α∇ · nα(r, t)
bα(r, t)∇δ(r − r′), and hence, write the time-evolution equa-
tion for the non-equilibrium covariance σαβ(r, r′; t) according

to Eq. (A2), as

∂σαβ(r, r′; t)
∂t

= D0
α∇ · nα(r, t) bα(r, t)∇

∑
κ

∫
Eακ [r, r2]σκβ[r2, r′]dr2

+D0
β∇′ · nβ(r′, t) bβ(r′, t)∇′

×
∑

κ

∫
Eβκ [r′, r2]σκα[r2, r]dr2

− δαβD0
α∇ · nα(r, t) bα(r, t)∇δ(r − r′)

− δαβD0
α∇′ · nα(r′, t) bα(r′, t)∇′δ(r − r′). (2.5)

As in Ref. 16, let us now describe the fluctuations
δnα(r, t + τ ) ≡ nα(r, t + τ ) − nα(r, t) of the local concen-
tration at position r and time t + τ around the mean value
nα(r, t) within a microscopic temporal resolution described
by the time τ . The assumption of local stationarity means that
in the time-scale of τ , nα(r, t) is to be treated as a constant.
We may add the spatial counterpart of this simplifying as-
sumption. Thus, we write the fluctuations as δnα(r + x, t + τ )
≡ nα(r + x, t + τ ) − nα(r, t), where the argument r of
nα(r, t) refers to the macroscopic resolution of the measured
variations of the local equilibrium profile, whereas the posi-
tion vector x adds the possibility of microscopic resolution in
the description of the thermal fluctuations. Defining the fluc-
tuations as the deviations of the microscopic local concentra-
tion profile nα(r + x, t + τ ) from the mean value nα(r, t) indi-
cates that, within the microscopic spatial variations described
by the position vector x, nα(r, t) must be treated as a constant.
To a large extent, this is equivalent to recovering the partition
of the system in cells of a small but finite volume 
V , and
assume that variations from cell to cell are described by the
vector r, whereas variations within cells are described by the
vector x, and that within the intra-cell scale, the system can
be regarded as spatially uniform and isotropic.

Under these conditions, the covariance σαβ(r + x,

r + x′; t) ≡ δnα(r + x, t)δnα(r + x′, t) may be written as
σαβ (|x − x′|; r, t), and in terms of its Fourier transform σαβ(k;
r, t), as

σαβ(| x − x′ |; r, t) = 1

(2π )3

∫
d3ke−ik·(x−x′)σαβ(k; r, t).

(2.6)
In this manner, Eq. (2.5) may be re-written as

∂σαβ(k; r, t)
∂t

= −k2D0
αnα(r, t)bα(r, t)

∑
κ

Eακ (k; n(r, t))σκβ(k; r, t)

−k2D0
βnβ(r, t)bβ(r, t)

∑
κ

Eβκ (k; n(r, t))σκα(k; r, t)

+2k2δαβD0
αnα(r, t) bα(r, t), (2.7)

where Eαβ(k; n(r, t)) is the FT of Eαβ(| x − x′ |; n(r, t)), de-
fined as the thermodynamic matrix evaluated at a uniform
concentration profile with a constant value given by the lo-
cal and instantaneous concentrations nα(r, t). The solution of
Eqs. (2.1) and (2.7) requires the simultaneous determination
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of the local mobility functions bα(r, t) given by

bα(r, t) =
[

1 +
∫ ∞

0

ζ ∗

α (τ ; r, t)dτ

]−1

, (2.8)

where 
ζ ∗
α (τ ; r, t) is the τ -dependent friction function of

species α. Here we shall omit the details of the derivation
of the approximate self-consistent system of equations from
which we determine these functions, and in fact, the resulting
equations are summarized in Appendix B (Eqs. (B1)–(B4)),
which are a straightforward extension to mixtures of those in
Sec. IV of Ref. 16.

Thus, in summary, Eqs. (2.1), (2.7), and (2.8) above, to-
gether with Eqs. (B1)–(B4) in Appendix B, constitute the
full non-equilibrium SCGLE theory. These equations can be
solved only after several elements have been specified. The
most fundamental of them refers to the nature of the system,
embodied in the pair interaction potential uαβ(r), and in the
potentials ψα(r) of the external fields. These two objects en-
ter in the second fundamental element, which is the chemical
equation of state in Eq. (2.2), now rewritten as

βμα[r; n, T ] = βμ∗
α(β) + ln nα(r)−cα[r; n, T ] + βψα(r),

(2.9)

to emphasize the dependence on the (generally non-uniform)
local temperature T(r) that reflects the imposed thermal
constraints. The functional dependence of cα[r; n, T] on
the concentration profiles nβ(r) embodies the non-ideal
contribution to the electrochemical potential. In the lan-
guage of density functional theory,33 a theoretical approx-
imate proposal for this dependence is actually equivalent
to proposing an approximate free energy functional. We
quote, for example, the simplest such approximation, re-
ferred to as the Debye-Hückel or random phase approxi-
mation, in which c[r; n, T] is written as37 c(RPA)

α [r; n, T ]
= −β

∑s
γ=1

∫
d3r ′uαγ (|r − r′|)nγ (r′). An approximate cα[r;

n, T] leads to a corresponding approximate thermody-
namic matrix Eαβ[r, r′; n, T ]. For example, E (RPA)

αβ [r, r′; n, T ]
= δ(r − r′)δαβ/nα(r) + βuαβ (|r − r′|). Other more elaborate
approximations for Eαβ[r, r′; n, T ] are available in the litera-
ture in terms of approximate free energy density functionals33

or approximate closure relations of the Ornstein-Zernike
equation of the equilibrium theory of liquids.34

Another element to specify refers to the possible
time-dependence of the external fields and thermodynamic
constraints to which the system is subjected. We have as-
sumed so far that the external fields are static and represented
by ψ(r), whereas the thermodynamic constraints consists of
keeping the temperature field uniform and constant, T(r, t)
= T (= 1/kBβ). There is, however, no fundamental reason
why we have to restrict ourselves to these conditions. In fact,
the general equations of the NE-SCGLE theory above can be
used, within the range of validity of the underlying assump-
tions, to describe the response of the system to prescribed
time-dependent external fields ψ(r, t), or programmed ther-
mal constraints described by the space- and time-dependent
temperature T(r, t). This would be done by just including
this possible time-dependence in Eq. (2.1) through the

electrochemical potential μα[r, t ; n, T ] = μ∗
α(T (r, t))

+ kBT (r, t) ln nα(r) − kBT (r, t)cα[r; n, T (t)] + ψα(r, t).
Most commonly, however, we may assume that such

time-dependent fields and constraints are used to drive the
system to an arbitrarily prescribed initial state (not necessar-
ily an equilibrium state), characterized by a mean concentra-
tion profiles n0

α(r) and covariance σ 0
αβ(k; r), for then setting

the external field constant in time ψα(r, t) = ψα(r) and the
temperature field uniform and constant T(r, t) = T, for t > 0.
The present theory then describes how the system relaxes af-
terwards, towards its final equilibrium state whose mean pro-
file and covariance are neq

α (r) and σ
eq

αβ (k; r). Describing this
response at the level of the mean local concentration profile
nα(r, t) is precisely the aim of the recently developed dynamic
density functional theory (DDFT),38, 39 whose central equa-
tion, extended to liquid mixtures, is recovered from our theory
in the limit in which we neglect the friction effects embodied
in 
ζ ∗

α (τ ; r, t) by setting bα(r, t) = 1 in Eq. (2.1). This con-
dition prevents DDFT from describing dynamic arrest condi-
tions. Nevertheless, it has been successfully applied to a va-
riety of systems, including the description of the irreversible
sedimentation of real and simulated colloidal suspensions.40

In contrast with DDFT, however, we consider that the
description of the irreversible relaxation of the macroscopic
state of the system is not complete without the description
of the relaxation of the covariance matrix σαβ(k; r, t) in
Eq. (2.7). In fact, under some circumstances, the main sig-
nature of the non-equilibrium evolution of a system may be
embodied not in the temporal evolution of the mean concen-
tration profiles nα(r; t) but in the evolution of the covariance
σαβ (k; r, t). This may be the case, for example, when a ho-
mogeneous system is constrained to remain approximately
homogeneous after a sudden temperature change, in which
case the non-equilibrium process is described by the time-
evolution equation in Eq. (2.7). In fact, in a well-defined par-
ticular limit of Eq. (2.7) one can recognize an equation that
has been fundamental in the description of the early stages of
spinodal decomposition, as pointed out in detail in Ref. 16.

B. Spatially uniform processes

Of course, the full numerical solution of the NE-SCGLE
equations, Eqs. (2.1), (2.7), (2.8), and (B1)–(B4), poses at this
stage a formidable numerical challenge, even within the sim-
plest but non-trivial conditions and simplifications. Thus, to
analyze the physical relevance of this theory, we must first
attempt the solution of these equations for a category of phe-
nomena characterized by drastically simplified conditions. As
in the monocomponent case, here we also restrict ourselves to
one such class of restricted conditions. Thus, rather than solv-
ing Eq. (2.1) for the mean local concentration profiles nα(r; t),
we shall assume that the system is constrained to remain
spatially uniform, such that nα(r; t) = nα(t), according to a
prescribed time-dependence nα(t) of the uniform bulk con-
centration of each species and/or to a prescribed spatially uni-
form time-dependent temperature field T(r, t) = T(t). These
constraints, which explicitly suppress the possibility of spon-
taneous spatial (static and dynamic) heterogeneities, provide
about the simplest model of the irreversible evolution of the
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state of the system in the absence of external fields. This is
in reality a strong simplification, rather difficult to achieve in
practice, but the hope is that it will capture some of the most
relevant features of the corresponding irreversible process.

In consistency with this assumed constraint we have
that the dependence on the position r disappears from the
equations of Subsection II A. In addition we shall rewrite
Eqs. (2.7), (2.8), and (B1)–(B4) in terms of the collective
and self partial intermediate scattering functions Fαβ (k, τ ; t)
and FS

αβ(k, τ ; t). These are related with the time-dependent

correlation functions Cαβ (k, τ ; t) and C
(S)
αβ (k, τ ; t) by means

of the matrix relations C(k, τ ; t) = √
n(t) · F (k, τ ; t) · √

n(t)
and C(S)(k, τ ; t) = √

n(t) · FS(k, τ ; t) · √
n(t), where the el-

ements of the matrix
√

n(t) are
√

nα(t)δαβ , and which for
τ = 0 read C(k, τ = 0; t) = σ (k; t) = √

n(t) · S(k; t) · √
n(t)

and C(S)(k, τ = 0; t) = √
n(t) · FS(k, τ =0; t) · √

n(t)=n(t).
This allows us to rewrite Eq. (2.7) in terms of the matrix S(k;
t) of non-equilibrium partial static structure factors Sαβ(k; t)
≡ σαβ(k; t)/

√
nα(t)nβ(t) as

∂S(k; t)

∂t
= −k2D0 · b(t) · [

√
n(t) · E(k; t) ·

√
n(t)] · S(k; t)

−S(k; t) · [
√

n(t) · E(k; t) ·
√

n(t)] · b(t) · D0k2

+2k2D0 · b(t), (2.10)

where Eαβ(k; t) ≡ Eαβ(k; n(t), T (t)). In this equation, the non-
zero elements of the s × s diagonal matrices D0 and b(t) are,
respectively, the short-time self-diffusion coefficients D0

α and
the functions bα(t) defined, according to Eq. (2.8), as

bα[τ ; t] =
[

1 +
∫ ∞

0
dτ
ζ ∗

α [τ ; t]

]−1

. (2.11)

Thus, the actual determination of bα(t) requires the eval-
uation of the τ -dependent friction function 
ζ ∗

α [τ ; t] for
each evolution time t. This actually involves solving the self-
consistent system of equations in Eqs. (B1)–(B4), which in
the new notation reads


ζ ∗
α (τ ; t) = D0

α

3(2π )3

∫
dk k2[FS(τ )]αα

×[h · √
n · S−1 · F (τ ) · S−1 · √

n · h]αα, (2.12)

where the matrix h is given by h = √
n

−1 · (S − I ) · √n
−1

,
and where we systematically omitted the arguments k and t of
the matrices F(k, τ ; t), FS(k, τ ; t), S(k; t), and h(k; t),

F̂ (k, z; t) = {zI + k2D0 · [zI + λ(k; t) · 
ζ̂ ∗(z; t)]−1

·S−1(k; t)}−1 · S(k; t), (2.13)

and

F̂ S(k, z; t)={zI + k2D0 · [zI + λ(k; t) · 
ζ̂ ∗(z; t)]−1}−1,

(2.14)

with the diagonal elements λα(k; t) of the matrix λ(k; t) given
by Eq. (B4), which in our case reads

λα(k; t) = 1

1 +
(

k
kc
α(t)

)2 , (2.15)

with kc
α(t) being an empirical cutoff wave-vector, to be de-

fined at the moment of a specific application, as discussed
later on. Equations (2.10)–(2.15) thus constitute the NE-
SCGLE theory that describes the irreversible processes in
model colloidal mixtures within the constraint that the sys-
tem remains in the average spatially uniform. To illustrate the
practical application of this non-equilibrium theory, in Sec. III
we discuss its predictions regarding the equilibration and ag-
ing of two specific model systems.

For completeness, however, let us also indicate that the
non-ergodicity parameters f(k; t) ≡ limτ→∞[F(k, τ ; t) · S−1(k;
t)] and fS(k; t) ≡ limτ→∞ FS(k, τ ; t) are now given by

f (k; t) = [I + k2n(t) · γ (t) · λ−1(k; t) · σ−1(k; t)]−1 (2.16)

and

f (S)(k; t) = [I + k2γ (t) · λ−1(k; t)]−1, (2.17)

where the time-dependent squared localization length γα(t)
≡ D0

α/ limτ→∞ 
ζ ∗
α (τ ; t) of particles of species α is the solu-

tion of
1

γα(t)
= 1

3(2π )3

∫
dk k2{[I + k2γ · λ−1]−1}αα

×{h ·
√

n · λ · [S · λ + k2γ ]−1 ·
√

n · h}αα, (2.18)

where we omitted the argument t of the matrices γ and λ(k).

III. EQUILIBRATION AND AGING: TWO
ILLUSTRATIVE EXAMPLES

Let us now discuss two illustrative applications of the
NE-SCGLE theory presented in Subsection II B. The first in-
volves the so-called RPM, i.e., an equimolar binary mixture
of equally sized but oppositely charged hard-spheres in a uni-
form medium of dielectric constant ε, so that the interaction
potential uαβ (r) between ions of species α and β is infinite for
r < σ and is given by Coulomb’s potential,

uαβ(r) = qαqβ/εr for r ≥ σ, (3.1)

with σ being the hard-sphere diameter of both species and
where q1 = −q2 = q > 0, with q being the charge of the
first species. Due to charge electroneutrality, both species are
present at the same number concentrations n1 = n2 = n/2.
The state space of this system is spanned by two indepen-
dent control parameters, namely, the reduced temperature T∗

≡ εkBTσ /q2, and the reduced total number density n∗ ≡ nσ 3

(or the total volume fractions φ = πn∗/6).
The second illustrative application involves a binary mix-

ture of soft spheres of diameter σ 1 (≡ σ ) and σ 2 (≤ σ ).
Two particles of species α and β will be assumed to interact
through the Weeks-Chandler-Andersen (WCA) model poten-
tial, which vanishes for r ≥ σαβ , and for r ≤ σαβ is given
by

uαβ(r) = ε[(σαβ/r)12 − 2(σαβ/r)6 + 1], (3.2)

with σαβ ≡ [σα + σβ]/2. The state space of this system is
spanned by four independent control parameters, namely, the
size asymmetry parameter δ ≡ σ 2/σ 1 (≤ 1), the reduced tem-
perature T∗ ≡ kBT/ε, and the two reduced number concen-
trations n∗

1 ≡ n1σ
3
1 and n∗

2 ≡ n2σ
3
2 (or, alternatively, the two
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volume fractions φ1 = πn∗
1/6 and φ2 = πn∗

2/6). In what fol-
lows, however, we shall fix the size asymmetry at the value δ

= 0.818, and assume equimolar composition, n1 = n2, so that
the available state space of this system will also be spanned by
two independent variables, for which we choose the reduced
temperature T∗ and the total volume fraction φ (≡ φ1 + φ2).

We choose these two model systems because in both
cases we find the manner to simplify the mathematical and
numerical solution of the NE-SCGLE equations, to become
essentially as straightforward as in the monocomponent case.
In both cases we shall assume that all the particles diffuse, in
the absence of interactions, with the same free-diffusion coef-
ficient, D0

1 = D0
2 = D0, and to simplify the notation, in both

cases we shall use σ and σ 2/D0 as the units of length and time,
respectively. In addition, as the unit of temperature we shall
use [q2/εkBσ ] in the RPM and [1/kBε] in the soft-sphere mix-
ture, so that from now on the reduced temperature T∗ will be
denoted simply as T.

A. Thermodynamic matrix, equilibrium structure,
and dynamic arrest diagrams

In both illustrative examples we start with the deter-
mination of the corresponding equilibrium properties ac-
cording to the methods of ordinary equilibrium statisti-
cal thermodynamics.34, 37 The most important physical input
needed in Eq. (2.10) is the thermodynamic matrix Eαβ(k; t)
≡ Eαβ(k; n1(t), n2(t), T (t)). As mentioned before, the ther-
modynamic matrix E(r; n1, n2, T ) may be determined either
by adopting an approximate free energy density functional
or by complementing the Ornstein-Zernike with an approx-
imate closure relation. The second approach allows us to de-
termine both, the thermodynamic matrix E(r; n1, n2, T ) and
the equilibrium covariance matrix σ eq(r; n1, n2, T), related to
each other by the second equilibrium condition. This equilib-

rium condition can also be written in Fourier space in terms
of the matrix Seq of equilibrium partial static structure fac-
tors as [

√
n · Seq(k; n, T ) · √n] · E(k; n, T ) = I , so that this

procedure determines simultaneously and approximately the
equilibrium partial static structure factors S

eq

αβ (k; n1, n2, T )
and the thermodynamic matrix Eαβ(k; n1, n2, T ) at any state
point (n1, n2, T). We have employed this approach to deter-
mine Eαβ (k; n1, n2, T ) in the two illustrative examples. In the
first of them, which involves the RPM, we employed the ana-
lytic solution of the mean spherical approximation (MSA),41

whereas for the soft-sphere mixture of the second exam-
ple, we relied on the numerical solution of the well-known
Rogers-Young approximation.37

The first step in the application of the SCGLE theory is
to determine the dynamic arrest diagram, which identifies the
regions in state space corresponding to ergodic and to dynam-
ically arrested states. This is done by solving the bifurcation
equations in Eq. (2.18) for the squared localization lengths γ 1

and γ 2 at each state point, using the matrix of equilibrium
static structure factors S

eq

αβ(k) evaluated at that state point as
the input matrix S of Eq. (2.18). If the resulting γ 1 and γ 2

are both infinite we conclude that at that state point the sys-
tem will be able to reach equilibrium (fully ergodic states),
whereas if both parameters turn out to be finite, the state
point corresponds to a fully arrested state. Dynamically mixed
states result when one parameter is infinite and the other is
finite.12, 35, 36 This possibility, however, will be absent in the
two examples discussed here.

The accessible state space of the restricted primitive
model is spanned by the temperature T and the total vol-
ume fraction φ, which Eq. (2.18) divides into two disjoint re-
gions (of ergodic and non-ergodic states), separated by the dy-
namic arrest transition line shown as a solid curve in Fig. 1(a).
Similarly, the accessible state space of the equimolar binary
WCA soft-sphere mixture of our second illustrative exam-
ple (restricted to the moderate size asymmetry δ = 0.818 to
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FIG. 1. Dynamic arrest line (solid curve) in the (φ, T) state space, with φ = total volume fraction, and T = temperature, of (a) the restricted primitive model
(temperature in units of [q2/εkBσ ]) and (b) the binary equimolar WCA soft-sphere mixture with size asymmetry δ = σ 2/σ 1 = 0.818 (temperature in units of
[1/kBε]). In each figure we schematically indicate the two kinds of isochoric quench processes discussed in the text. In the first (dashed arrow), the initial (circle)
and final (triangle) state points lie in the ergodic region, whereas in the second (solid arrow), the final state point (square) lies in the non-ergodic region. The
asterisk is the intersection of the dynamic arrest line with the isochore at fixed volume fraction φ, which defines the dynamic arrest (or “MCT”) temperature
Tc(φ) at that isochore.
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prevent possible mixed states) will also be spanned by the
temperature T and the total volume fraction φ. The corre-
sponding dynamic arrest diagram is presented in Fig. 1(a). In
both cases, the fully ergodic region corresponds to low den-
sities and/or high temperatures, whereas the dynamically ar-
rested regime appears in the opposite regime.

Figs. 1(a) and 1(b) schematically indicate with two down-
ward arrows the two fundamentally different kinds of quench
processes applied on the model systems in each illustrative
example. Both correspond to an instantaneous temperature
quench at fixed volume fraction φ from an initial tempera-
ture Ti to a lower final temperature Tf, and in both cases the
initial state point (φ, Ti) is assumed to lie well in the ergodic
region. The shorter arrows indicate a shallow quench to a fi-
nal point also in the ergodic region, whereas the longer arrows
indicate a deeper quench ending well inside the non-ergodic
region. Thus, if we denote by Tc(φ) the temperature of the in-
tersection between the dynamic arrest line and the isochore of
volume fraction φ (denoted by the asterisk in both figures),
then in the shallower quench the final temperature Tf is still
larger than the φ-dependent dynamic arrest critical tempera-
ture Tc(φ), while in the deeper quench Tf lies below Tc(φ).

B. Time-evolution equations for the non-equilibrium
static structure factors

The next step in this concrete application of the non-
equilibrium theory is to solve Eqs. (2.10)–(2.14) for the two
simple model systems and quench processes just described.
As mentioned before, we have chosen illustrative examples
for which the mathematical and numerical aspects involved
are not substantially more difficult than in the corresponding
monocomponent case, explained in detail in Ref. 18. To see
this, let us start by adapting Eq. (2.10) to the conditions of
the instantaneous isochoric quench of our examples, in which
the t-dependence of the control parameters is T(t) = Tiθ (− t)
+ Tfθ (t) and nα(t) = nα . It is then not difficult to show that
for t > 0 we can rewrite Eq. (2.10) as

∂S(k; t)

∂t
= H (t) · [S(k; t) − [

√
n · E (f )(k) · √

n]−1]

+[S(k; t) − [
√

n · E (f )(k) · √
n]−1] · H †(t),

(3.3)

with H (t) = −k2D0 · b(t) · [
√

n · E (f )(k) · √
n] and E (f )

αβ (k)
≡ Eαβ(k; n1, n2, Tf ).

This equation has the same mathematical structure as
the corresponding equation of the monocomponent case (see
Eq. (2.3) of Ref. 18). Hence, the solution has the same struc-
ture, although in the present case it has a matrix character.
Thus, for given initial condition S(k; t = 0) = Si(k), the solu-
tion can be written in matrix form as

S(k; t) = S
eq

f (k) + e−A(k,t) · [
Si(k) − S

eq

f (k)
] · e−A†(k,t),

(3.4)

with A(k, t) = k2D0 · u(t) · [Seq

f (k)]−1 and with the di-
agonal elements of the matrix u(t) being defined as
uα(t) = ∫ t

0 bα(t ′)dt ′. In this equation S
eq

f (k) is the expected

equilibrium value of the matrix of static structure factors at the
final state point (φ, Tf), i.e., S

eq

f (k) ≡ Seq(k; φ, Tf ) = [
√

n ·
E (f )(k) · √

n]−1. Assuming that the matrix e−A(k, t) (which is
the identity at t = 0) vanishes at t = ∞, this expression inter-
polates S(k; t) between its arbitrary initial value S(i)(k) and its
expected long-time equilibrium value S

eq

f (k).
At this point we consider an additional simplification of

this interpolating expression for S(k; t). Let us assume that
for some reason the matrix u(t), which is already diagonal,
actually happens to be proportional to the identity matrix I,
i.e., that its diagonal elements uα(t) are actually identical,
u1(t) = u2(t) = u(t), where now u(t) is a scalar (not the orig-
inal matrix) function of t. Mathematically this simplifies the
method of solution, since now the solution S(k; t) in Eq. (3.4)
can be written as S(k; t) = S∗(k; u(t)), where the matrix func-
tion S∗(k; u) of two scalar arguments (i.e., k and u) is defined
as

S∗(k; u) = S
eq

f (k) + e−χ(k)u · [
Si(k) − S

eq

f (k)
] · e−χ †(k)u,

(3.5)

with χ (k, t) ≡ k2D0 · [Seq

f (k)]−1. This expression is identical
to the corresponding expression of the monocomponent case
described in Ref. 18, in the sense that it allows the implemen-
tation of the same strategy for the numerical solution of the
NE-SCGLE equations.

In monocomponent systems, however, we naturally have
only one single parameter u. Such parameter can be iden-
tified with what is referred to as “intrinsic” (or “material”
or “internal”) time (or “clock”) in the language of the Tool-
Narayanaswamy model.42–47 Thus, from a physical point of
view, the simplification just described corresponds to neglect-
ing the difference between the two strongly coupled “mate-
rial clocks” u1 and u2, whose existence is a consequence of
the presence of the two species of highly interacting particles
that constitute the binary mixture. Clearly, under certain cir-
cumstances, the dynamic disparity between species may ren-
der this approximation totally useless. This may happen, for
example, with a binary hard-sphere mixture with large size
asymmetry in the vicinity of dynamically mixed states, in
which the larger particles become dynamically arrested while
the smaller particles continues to diffuse.12, 35 In other circum-
stances, such as in our example involving the restricted prim-
itive model, in which the only difference between the two
species is the sign of the electric charge, this simplification
may even be an exact condition imposed by exact symmetry
considerations. In many other circumstances, such as in our
second example involving the soft-sphere mixture with mod-
erate size asymmetry, we expect the difference between u1

and u2 to be sufficiently small that the simplification u1 = u2,
without being satisfied exactly, turns out to be a good approx-
imation.

Regarding the strategy for the actual numerical solution
of the full NE-SCGLE equations, the most crucial step is the
determination of the function u(t), i.e., of the relationship be-
tween the single “effective” material time u and the exper-
imental waiting time t. According to their original defini-
tion, u1(t) ≡ ∫ t

0 b1(t ′)dt ′ and u2(t) ≡ ∫ t

0 b2(t ′)dt ′, where b1(t)
and b2(t) are the time-dependent mobilities of particles of
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species 1 and 2. One manner to impose the simplification
u1(t) = u2(t) = u(t) without requiring that b1(t) = b2(t), is to
define u(t) as u(t) ≡ ∫ t

0 b(t ′)dt ′, with b(t) ≡ [b1(t) + b2(t)]/2.
Notice that the relationship between u and t may be writ-
ten either as the function u = u(t) = ∫ t

0 b(t ′)dt ′ or as the in-
verse function t = t(u) = ∫ u

0 du′/b∗(u′), where b∗(u) is such
that b(t) = b∗(u(t)). Let us now explain how to determine the
function b(t).

Just like in the monocomponent case, we consider a se-
quence S∗(k; un) of snapshots of the matrix S∗(k; u) of par-
tial static structure factors, generated using Eq. (3.5) when
the parameter u attains a sequence of equally spaced values
un, say un = n
u (with a prescribed 
u and with n = 0,
1, 2, . . . ). The fact that the matrix S(k; t) can be written as
S(k; t) = S∗(k; u(t)) implies that this sequence will be identi-
cal to the sequence S(k; tn) generated by the exact solution in
Eq. (3.4), evaluated at the corresponding sequence of experi-
mental times tn given by tn = ∫ un

0
1

b(u′)du′. In other words, the
nth member of the sequence of static structure factors can be
labelled either with the label un, as S(k; un), or with the label
tn, as S(k; tn). For sufficiently small 
u, the discretized form
of the previous relationship between tn and un can be written
as

tn+1 = tn + 
u

b(un)
. (3.6)

Thus, in practice what we do is to solve the self-consistent
system of equations (2.11)–(2.15) with S(k; t) replaced by
each snapshot S(k; tn) = S∗(k; un) of the sequence of static
structure factors. This yields, among all the other dynamic
properties, the sequence of values b∗(un) of the function b∗(u).
This sequence can then be used in the recurrence relation in
Eq. (3.6) to obtain the desired time sequence tn, which allows
us to assign a well-defined time label to the sequence S(k;
tn) of static structure factors and to the sequence b(tn) of the
instantaneous mobility b(t). Of course, since the solution of

equations (2.11)–(2.15) yields all the dynamic properties, we
also have in store the corresponding sequence of snapshots
of dynamic properties such as F(k, τ ; tn), FS(k, τ ; tn), the
α-relaxation time τα(tn), etc.

C. Equilibration vs. aging in the restricted
primitive model

We have applied the protocol just described to the de-
scription of the isochoric irreversible evolution of the struc-
ture and the dynamics of the two model systems introduced
at the beginning of this section, after they are subjected to
the instantaneous quench processes schematically indicated
by the arrows in the state diagrams in Fig. 1. Let us first con-
sider the restricted primitive model under the application of
two quench processes starting with the system in equilibrium
at the state point (φ, Ti) = (0.1, 1.0), whose temperature is
instantaneously lowered at time t = 0 to a final value Tf (see
Fig. 1(a)). The solution of the NE-SCGLE equations (2.10)–
(2.15) just described yields the non-equilibrium evolution
(i.e., the non-stationary t-dependence) of the matrix Sαβ(k; t)
of partial static structure factors, of the matrices Fαβ (k; t) and
FS

αβ(k; t) of (collective and self) partial intermediate scatter-
ing functions, and of the properties that derive from them.

This wealth of information on the non-equilibrium be-
havior of the structural and dynamic properties of the RPM
is illustrated in Figs. 2 and 3 in terms of the irreversible
structural relaxation of only the partial static structure fac-
tor S11(k; t) and of the non-equilibrium evolution of FS

11(k; t)
(which in this example are identical, respectively, to S22(k; t)
and FS

22(k; t)). The results in Fig. 2 correspond to a quench
from the initial temperature Ti = 1.0 to the final tempera-
ture Tf = 0.012, which is still larger than the φ-dependent dy-
namic arrest critical temperature Tc(φ = 0.1) = 0.0113. The
results in Fig. 3 correspond to a quench from the same ini-
tial temperature Ti = 1.0 to the final temperature Tf = 0.010,
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FIG. 2. Snapshots of (a) the time-evolving partial static structure factor S11(k; t), and (b) of the corresponding partial self intermediate scattering function
FS

11(k, τ ; t). These properties refer to the restricted primitive model subjected to the quench Ti = 1.0 → Tf = 0.012 at φ = 0.10 (equilibration process). The
dashed and the dotted lines correspond, respectively, to the initial and final equilibrium states, and the sequence of soft solid curves correspond to t = 0.051,
0.25, 2.11, 6.39, 15.30, 30.33, 105.69. The insets exhibit the kinetics (i.e., the t-dependence) of (a) the maximum Smax

11 (t) at k = kmax of the main peak of S11(k;
t) and (b) the “alpha”-relaxation time τ 1(t) (=τ 2(t)) at k = 4.20. We recall that throughout this paper we use σ and σ 2/D0 as the units of length and time,
respectively.
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FIG. 3. Same as in Fig. 2 but for the quench Ti = 1.0 → Tf = 0.01 at φ = 0.10 (dynamic arrest process) and for the sequence of waiting times t = 0.06, 0.98,

6.49, 19.94, 87.28, 230.37. Here we also exhibit the non-equilibrium stationary solution Sc
11(k) and F

S,c
11 (k = 4.20, τ ) (thick solid curve).

which lies below Tc(φ). The first case illustrates a process of
full equilibration, in which the final state point (φ, Tf) lies in
the fully ergodic region. The second case illustrates the pre-
dicted scenario corresponding to a process of aging, in which
the final state point (φ, Tf) corresponds to a dynamically ar-
rested state. The scenario of full equilibration has no sur-
prises: as illustrated in Fig. 2(a), S11(k; t) evolves with no im-
pediment from its initial value S11(k; t = 0) = S

eq

11 (k; φ, Ti)
(dashed line) to its equilibrium value S

eq

11 (k; φ, Tf ) expected
at the final temperature Tf (dotted line). The kinetics of the
structural relaxation of S11(k; t) at k = kmax is illustrated in
the inset of Fig. 2(a), which plots the height Smax

11 (t) of the
main peak of S11(k; t) as a function of t. Similarly, as illus-
trated in Fig. 2(b), FS

11(k, τ ; t) evolves from its initial value
F

S,eq

11 (k, τ ; φ, Ti) to its equilibrium value F
S,eq

11 (k, τ ; φ, Tf )
expected at the final temperature Tf. To illustrate the kinet-
ics of this evolution in the inset we exhibit the t-dependence
of the “alpha”-relaxation times τα(t), defined by the condi-
tion FS

αα(k = 4.20, τα; t) = 1/e, with α = 1 and 2 (although
in this case τ 1(t) = τ 2(t)).

Let us now briefly describe the main differences between
the previous scenario and the aging scenario illustrated in
Fig. 3, in which the quench is made to a final temperature Tf

= 0.01 (clearly below Tc = 0.0113). In this case, the solution
of Eq. (2.18) for the squared localization length γ f, obtained
using the equilibrium static structure factor S(eq)(k; φ, Tf) of
the final state point, will now have a finite value, thus implying
the existence of a finite value uc of the parameter u, such that
the solution γ ∗(u) of the bifurcation equation (2.18) remains
infinite only within the interval 0 ≤ u < uc. An essential prop-
erty of uc is that b∗(u) → 0 as u approaches uc from below.
As indicated above, the u-dependence of b∗(u) determines the
correspondence between the intrinsic time u and the actual
evolution time t, according to t(u) ≡ ∫ u

0 du′/b∗(u′). This al-
lows us to exhibit the fundamentally different behavior of the
functions b∗(u) and b(t). While the former has a well-defined
zero at a finite value of its argument, namely, at u = uc, the
function b(t) can be shown (in an identical manner as in the
monocomponent case, described in Ref. 16) to decay to zero

in a much slower fashion, namely, as b(t) ∝ t−η with η = 1.83.
Thus, one of the main predictions of the NE-SCGLE theory
is that b(t) will remain finite for any finite time t, and only at
t = ∞ the mobility will reach its asymptotic value of zero.
Thus, the system in principle will always remain fluid-like,
and the dynamic arrest condition b(t) = 0 will only be reached
after an infinite waiting time.

This property of the non-equilibrium mobility function
b(t) reveals the main feature of the time evolution of the ma-
trix S(k; t) of partial static structure factors when the sys-
tem is driven to a point (φ, Tf) in the region of dynamically
arrested states. We refer to the fact that under such condi-
tions, the long-time asymptotic limit of S(k; t) will no longer
be its expected equilibrium value Sf(k) = Seq(k; φ, Tf), but
another, well-defined non-equilibrium static structure factor
S(c)(k) given, according to Eq. (3.4), by

S(c)(k) ≡ S∗(k; uc)

= Sf (k) + e−χ(k)uc · [Si(k) − Sf (k)] · e−χ †(k)uc . (3.7)

This non-equilibrium static structure factor not only depends
on the final point (φ, Tf), but also on the protocol of the quench
(for our instantaneous isochoric quench processes with the
same initial conditions, this means on the final temperature
Tf). In Fig. 3(a) we present Si

11(k), S
f

11(k), and S
(c)
11 (k), which

are indicated by the dashed, dotted, and thick solid lines, re-
spectively. The other (thin solid) lines are snapshots that il-
lustrate the t-evolution of the non-stationary, non-equilibrium,
evolution of S11(k; t).

Since at any evolution time the current value of the
matrix S(k; t) determines the current value of the dynamic
properties, we also have, for example, that FS(k, τ ; t) will
no longer be able to reach its expected, dynamically ar-
rested equilibrium value FS, eq(k, τ ; φ, Tf) (predicted, for
example, by the MCT or the equilibrium SCGLE the-
ory). Instead, it will approach the non-equilibrium arrested
value FS(c)(k, τ ), which now depends not only on the final
state point (φ, Tf), but on the whole preparation protocol.
These general features are illustrated in Fig. 3(b) with the
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FIG. 4. Snapshots of (a) the time-evolving partial static structure factor S11(k; t), and (b) of the corresponding partial self intermediate scattering function
FS

11(k, τ ; t) at the position k = 7.75 of the main peak of S11(k; t). These properties refer to the binary equimolar WCA soft sphere mixture with size asymmetry
δ = σ 2/σ 1 = 0.818, subjected to the quench Ti = 1.0 → Tf = 0.25 at φ = 0.7 (equilibration process). The dashed and the dotted lines correspond, respectively,
to the initial and final equilibrium states, and the sequence of soft solid curves correspond to t = 0.014, 0.36, 0.54, 9.30, 11.82. The insets exhibit the kinetics
(i.e., the t-dependence) of (a) the maximum Smax

αα (t) of Sαα(k; t) for α =1 and 2, with the dotted horizontal lines corresponding to their asymptotic equilibrium
value; and (b) the “alpha”-relaxation times τ 1(t) (solid line) and τ 2(t) (dashed line).

NE-SCGLE results for FS
11(k, τ ; t) corresponding to our spe-

cific example.

D. Equilibration and aging in a binary soft
sphere mixture

Let us now discuss our second illustrative example,
which refers to the binary equimolar WCA soft sphere
mixture with size asymmetry δ = σ 2/σ 1 = 0.818. The
dynamic arrest diagram of this system in the volume fraction–
temperature (φ, T) state space was presented in Fig. 1(b). We
illustrate the solution of the NE-SCGLE equations (2.10)–
(2.15) for the two kinds of isochoric quench processes indi-
cated in that figure for φ = 0.7. As in the previous example,
we illustrate the irreversible structural and dynamic relaxation

in terms of the t-dependence of the partial static structure fac-
tor S11(k; t) and of the corresponding non-equilibrium self in-
termediate scattering function FS

11(k; t). The results in Fig. 4
illustrate the full equilibration of the system with the quench
to a final temperature Tf = 0.25, higher than the dynamic ar-
rest temperature Tc(φ), which for φ = 0.7 has the value Tc

= 0.168. Fig. 5 illustrates the aging scenario with the quench
to a final temperature Tf = 0.1, lower than Tc.

The main features exhibited by these results are in gen-
eral identical to those of the previous example. For example,
the equilibration process proceeds from the initial to the final
equilibrium state within a finite equilibration time, while the
quench to dynamically arrested conditions is characterized by
the impossibility to reach the equilibrium stationary solution
and by the very slow approach to the new non-equilibrium
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FIG. 5. [(a)–(b)] Same as in Fig. 4 but for the quench Ti = 1.0 → Tf = 0.1 at φ = 0.7 (dynamic arrest process) and for the sequence of waiting times t = 0.008,

0.033, 0.805, 4.07, 12.38, 93.78. Here we also exhibit the non-equilibrium stationary solution Sc
11(k) and F

S,c
11 (kmax, τ ) (thick solid curve). In the inset of

(a), the horizontal solid lines correspond to the asymptotic non-equilibrium final value of Smax
αα (t).
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stationary solution. Thus, rather than describing further those
features that are common to the two examples, we highlight
the most relevant qualitative differences. The first refers to the
physical symmetries of the RPM, in which the two species
are actually identical, except for the electric charge of the
two species which are, however, symmetric: q1 = −q2. This
leads to the exact symmetry conditions S11(k; t) = S22(k; t),
FS

11(k; τ ; t) = FS
22(k; τ ; t), and b1(t) = b2(t). This then implies

that the simplification u1(t) = u2(t) is not an approximation,
but an exact condition.

In contrast, in the binary soft sphere mixture of the
present example, there is not an analogous exact symmetry,
and hence, S11(k; t) �= S22(k; t), FS

11(k; τ ; t) �= FS
22(k; τ ; t), and

b1(t) �= b2(t). Thus, neglecting the difference [u1(t) − u2(t)]
is in this case a simplifying approximation. We must point
out, however, that this does not imply neglecting the cor-
responding differences in other dynamic properties, which
are, in fact, described by the full solution of the NE-SCGLE
equations. To illustrate this fact, in the insets of Figs. 4
and 5, along with the kinetics of S11(kmax; t) and of the
“alpha”-relaxation time τ 1(t), we plot the corresponding ki-
netics of the second species, i.e., S22(kmax; t) and τ 2(t). Al-
though due to the moderate size asymmetry of the two species
these differences are indeed small, we wish to emphasize
the fact that the approximation u1(t) ≈ u2(t) does not sup-
press these physically important structural and dynamical
differences.

There are, of course, many other aspects regarding the
physical interpretation of the specific results reported in
Figs. 2–5. As indicated in the Introduction, however, the in-
tention of including these results is mostly to explain and il-
lustrate the methodological aspects involved in the numerical
solution of the NE-SCGLE equations in the simplified case in
which these methodological aspects are actually very similar
to those employed in the monocomponent case. The physi-
cal aspects of the specific predictions of our theory regarding
the quench of the RPM and of the binary soft-sphere mix-
ture do deserve a careful discussion, which will be reported
opportunely.

IV. DISCUSSION AND SUMMARY

In summary, we have extended the NE-SCGLE theory
of irreversible processes in glass-forming liquids to multi-
component systems. This description consists essentially of
the coarse-grained time-evolution equations for the mean
value and for the covariance of the fluctuations of local
density of the fluid, coupled together by a local mobil-
ity function for each species. These mobility functions, in
their turn, are determined from the solution of the non-
equilibrium version of the SCGLE equations for the non-
stationary dynamic properties (self and collective partial in-
termediate scattering functions, etc.) The resulting theory,
summarized by Eqs. (2.1), (2.7), (2.8), and (B1)–(B4), pro-
vides a robust general framework that describes the spatially
non-uniform and temporally non-stationary evolution of a
liquid towards its thermodynamic equilibrium state or dur-
ing its process of dynamic arrest. These equations, however,
were later restricted to Eqs. (2.10)–(2.15), which describe the

irreversible processes in model colloidal mixtures within the
constraint that the system remains in the average spatially
uniform.

Section III consisted of the specific application of these
simpler NE-SCGLE equations to the description of the iso-
choric and uniform evolution of the non-equilibrium evo-
lution of two simple model systems, namely, a binary
hard sphere mixture of moderately different sizes and an
electroneutral binary mixture of equally sized and oppo-
sitely charged hard-spheres, after being subjected to instan-
taneous quench processes. We used these examples to il-
lustrate some methodological aspects of the application of
the theory in the quantitative description of the equilibration
and aging process in multicomponent glass-forming model
liquids.

The intention of these illustrative examples was to pro-
vide a reliable reference for the eventual application of this
non-equilibrium theory to other systems or to different pro-
cesses. Of course, our discussion of the physical aspects of
the specific predictions of our theory regarding the quench
of the RPM and of the binary soft-sphere mixture leave a
large number of aspects to be discussed in more detail. For
example, in regimes corresponding to highly (size or charge)
asymmetric conditions, the binary hard-sphere mixture and
the RPM, may be trapped in dynamically mixed states. In the
first case, it was previously determined12, 35 that the equilib-
rium SCGLE theory predicts that a highly size-asymmetric
hard-sphere binary mixture will present mixed states for suf-
ficiently large size-asymmetry, in which only the large par-
ticles undergo dynamic arrest. Similarly, the SCGLE the-
ory predicts mixed states in the charge-asymmetric RPM in
which the more highly charged ions become arrested but not
their counterions.36 The aging behavior when the system is
quenched to a mixed state is indeed a provoking and interest-
ing issue.

Similarly, the analysis of the validity of our theory in the
various time regimes of the (τ , t) plane is a relevant sub-
ject, since there must be regimes in which the accuracy of
the approximations upon which the theory is build will dete-
riorate. For example, the local stationarity approximation di-
rectly implies a faster decay of the predicted time-correlation
functions at small waiting times, compared with the simula-
tions of an instantaneous quench. These or similar effects may
be behind the quantitative differences observed between the
predicted decay of the time correlation functions and the de-
cay observed in the results of simulation experiments such as
those in Refs. 14, 15, and 48. As said before, however, the dis-
cussion of these issues will be the subject of separate reports
which will surely be based on the formal derivations and prac-
tical strategies presented in this report.
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APPENDIX A: NON-EQUILIBRIUM
ONSAGER-MACHLUP THEORY OF THERMAL
FLUCTUATIONS

Let us thus start by briefly summarizing the extended
non-stationary version of Onsager’s theory of thermal fluc-
tuations, whose full proposal is explained in detail in Ref. 16.
In Subsection 1 of Appendix A the abstract objects appear-
ing in this formalism will take a concrete meaning in the spe-
cific context of liquid mixtures. To summarize the extended
Onsager’s formalism, let us consider a system whose macro-
scopic state is described in terms of a set of M extensive vari-
ables ai(t), i = 1, 2, . . . , M, which we group as the components
of a M-component (column) vector a(t). The fundamental
postulate of this generalized theory is that the dynamics of the
state vector a(t) may be represented by a multivariate stochas-
tic process which is globally non-stationary, but that within
any small interval of the evolution time t may be regarded as
approximately stationary. The global non-stationarity of this
stochastic process is described by the time-evolution of two
coarse grained variables, namely, the mean value a(t) and the
covariance σ (t) ≡ δa(t)δa†(t), with δa(t) ≡ a(t) − a(t).

1. Time-evolution equation for the mean value
and for the covariance

The mean value a(t) is the solution of a generally nonlin-
ear equation, represented by

da(t)

dt
= R [a(t)] , (A1)

and the time-evolution of the covariance σ (t) is described by
an equation of the general form

dσ (t)

dt
= −L[a(t)] · E[a(t)] · σ (t) − σ (t) · E[a(t)] · L†[a(t)]

+(L[a(t)] + L†[a(t)]), (A2)

with the M × M matrix L[a(t)] related with R [a] by means
of

L[a(t)] ≡ − (∂R [a] /∂a)a=a(t) · E−1 [a(t)] . (A3)

In these equations E [a] is the thermodynamic matrix, de-
fined as

Eij [a]≡− 1

kB

(
∂2S[a]

∂ai∂aj

)
=−

(
∂Fi[a]

∂aj

)
(i, j =1, 2, ...,M),

(A4)
where the function S[a] determines the dependence of the
entropy on the components of the vector a, i.e., S = S[a]
is the fundamental thermodynamic relation of the system,31

and hence, Fj [a] ≡ k−1
B

(
∂S[a]/∂aj

)
is the conjugate inten-

sive variable associated with aj. Equation (A2) is just a sim-
ple extension of the equation of motion for the covariance
involved in the conventional Onsager’s theory (see, for ex-
ample, Eq. (1.8.9) of Ref. 4), in which the matrices L[a(t)]
and E [a(t)] replace their equilibrium value L[aeq] and E[aeq]
(Ref. 32).

2. Microscopic fluctuations and non-stationary
time-correlation function

The second fundamental postulate is that the locally sta-
tionary microscopic fluctuations around the non-stationary
mean value a(t), defined as δa(t + τ ) ≡ a(t + τ ) − a(t), can
be described by a mathematical model that we refer to as
a generalized Ornstein-Uhlenbeck stochastic process.16 This
is defined by the most general linear stochastic differential
equation with additive noise, which at a given fixed evolution
time t has the structure of the following generalized Langevin
equation:23

dδa(t + τ )

dτ

= −ω[a(t)] · σ−1(t) · δa(t + τ )

−
∫ τ

0
dτ ′γ [τ − τ ′; a(t)] · [σ (t)]−1 · δa(t+τ ′) + f(t+τ ),

(A5)

in which the stochastic vector f(t + τ ) is assumed sta-
tionary but not necessarily Gaussian or δ-correlated, the
matrix ω[a] is antisymmetric, ω[a] = −ω†[a], and the
memory matrix γ [τ ; a] satisfies the fluctuation-dissipation re-
lation γ [τ ; a(t)] = γ †[−τ ; a(t)] = 〈f(t + τ )f †(t + 0)〉. From
this generalized Langevin equation one then derives the time-
evolution equation for the non-stationary time-correlation
function C(τ ; t) ≡ δa(t + τ )δa†(t), which reads

∂C(τ ; t)

∂τ
= −ω[a(t)] · σ−1(t) · C(τ ; t)

−
∫ τ

0
dτ ′γ [τ − τ ′; a(t)] · σ−1(t) · C(τ ′; t),

(A6)

and whose initial condition is C(τ = 0; t) = σ (t). This equa-
tion describes the decay of the correlation function C(τ ; t)
with the “microscopic” correlation time τ , when the system
has evolved during a coarse-grained (or “macroscopic”) evo-
lution time t from an initial state described by a0 ≡ a(t = 0)
and σ 0 ≡ σ (t = 0), to the “current” state described by a(t)
and σ (t).

Equations (A1), (A2), and (A6) are three equations
for three unknown measurable properties, namely, the mean
value a(t), the covariance σ (t), and the non-stationary time-
correlation function C(τ ; t). These equations involve the ther-
modynamic matrix E [a], considered known, as well as the
matrices L[a], ω[a], and γ [τ ; a]. One consequence of the lo-
cal stationarity (of the globally non-stationary process) is that
the “macroscopic” kinetic matrix L[a(t)] must be related with
the “microscopic” matrices ω[a(t)] and γ [τ ; a(t)] by means of
the following Green–Kubo-like relation:

L[a(t)] ≡ ω[a(t)] +
∫ ∞

0
dτγ [τ ; a(t)]. (A7)

Thus, the kinetic matrix L[a(t)] could be obtained if the ma-
trices ω[a(t)] and γ [τ ; a(t)] could be determined by indepen-
dent arguments.

In general, the antisymmetric matrix ω[a(t)] repre-
sents conservative (mechanical, geometrical, or streaming)
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terms, and is just the antisymmetric part of L[a], i.e., ω[a]
= (L[a] − L†[a])/2. Thus, its determination in specific con-
texts is relatively straightforward. In contrast, the memory
matrix γ [τ ; a(t)] summarizes the effects of all the complex
dissipative irreversible processes taking place in the system.
Its exact determination is perhaps impossible except in spe-
cific cases or limits; otherwise one must resort to approxima-
tions. These may have the form of a closure relation express-
ing γ [τ ; a(t)] in terms of the two-time correlation matrix C(τ ;
t) itself, giving rise to a self-consistent system of equations, as
we illustrate in the application that follows.

APPENDIX B: SELF-CONSISTENT DETERMINATION
OF THE LOCAL MOBILITIES bα(r, t)

As indicated at the end of Subsection II A, the solution
of Eqs. (2.1) and (2.7) requires the simultaneous determi-
nation of the local mobility functions bα(r, t), which in its
turn are written in terms of the τ -dependent friction functions

ζ ∗

α (τ ; r, t) in Eq. (2.8). The determination of these friction
functions is only possible in an approximate manner, mean-
ing or rational of the sequence of approximations involve are
the same as those explained in Ref. 16 for the monocom-
ponent case, and hence, here we only summarize the result-
ing self-consistent system of equations, which starts with the
following approximate equation for 
ζ ∗

α (τ ; r, t):


ζ ∗
α (τ ; r, t) = D0

α

3(2π )3nα(r, t)

∫
dk k2[C(S)(τ )]αα

×[h · n · σ−1 · C(τ ) · σ−1 · n · h]αα. (B1)

In this equation n, C(τ ), C(S)(τ ), h, and σ are s × s sym-
metric matrices. The elements of n are nαβ ≡ nα(r, t)δαβ ,
while the (k; r, t)-dependent elements Cαβ(k, τ ; r, t) of
the matrix C(τ ) are the FT of the correlation functions
Cαβ(x, τ ; r, t) ≡ δnα(r + x, t + τ )δnβ(r, t). Similarly, the el-
ement C

(S)
αβ (k, τ ; r, t) of the diagonal matrix C(S)(τ ) is the FT

of the self component of Cαβ(x, τ ; r, t). Also, the (k; r, t)-
dependent covariance matrix σ is defined as σ = C(τ = 0)
and the matrix h by n · h ≡ σ · n−1 − I , with I being the s
× s unit matrix. With this notation, we also have that C(S)(τ
= 0) = I.

In order to actually evaluate 
ζ ∗
α (τ ; r, t) using Eq. (B1)

we need independent expressions for Cαβ(k, τ ; r, t) and
C

(S)
αβ (k, τ ; r, t) at each position r and each evolution time t.

Once again we omit the details of the extension to mixtures
of the arguments given in Ref. 16, which lead to the follow-
ing approximate expressions for the Laplace transforms (LT)
Ĉαβ(k, z; r, t) and Ĉ

(S)
αβ (k, z; r, t), namely,

Ĉ(k, z; r, t) = {zI + k2D0 · n(r, t) · [zI + λ(k; r, t)

·
ζ̂ ∗(z; r, t)]−1 · σ−1(k; r, t)}−1 · σ (k; r, t)

(B2)

and

Ĉ(S)(k, z; r, t)

= {zI +k2D0 · [zI +λ(k; r, t) · 
ζ̂ ∗(z; r, t)]−1}−1 · n(r, t).

(B3)

In these equations D0, 
ζ̂ ∗(z; r, t), and λ(k; r, t) are
s × s diagonal matrices whose diagonal elements are, respec-
tively, D0

α , the LT 
ζ̂ ∗
α (k, z; r, t) of 
ζ ∗

α (k, τ ; r, t), and the
phenomenological “interpolating functions” λα(k; r, t), given
by

λα(k; r, t) = 1

1 +
(

k
kc
α

)2 , (B4)

where kc
α is an empirical cutoff wave-vector, defined in detail

for each application of the present theory.
Equations (B1)–(B4) constitute the non-equilibrium ver-

sion of the self-consistent system of equations defining the
equilibrium SCGLE theory. This system of equations, how-
ever, must be solved at each position r and evolution time t,
and is actually coupled, through Eq. (2.8), with both, the “dy-
namic density-functional” equation for nα(r, t), Eq. (2.1), and
with the equation that describes the non-equilibrium structural
relaxation of the system, namely, Eq. (2.7). Thus, the full sys-
tem of equations that defines the NE-SCGLE theory is consti-
tuted by Eqs. (2.1), (2.7), (2.8), and (B1)–(B4).
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