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The recently developed nonequilibrium extension of the self-consistent generalized Langevin equation theory
of irreversible relaxation [Ramı́rez-González and Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504
(2010)] is applied to the description of the irreversible process of equilibration and aging of a glass-forming
soft-sphere liquid that follows a sudden temperature quench, within the constraint that the local mean particle
density remains uniform and constant. For these particular conditions, this theory describes the nonequilibrium
evolution of the static structure factor S(k; t) and of the dynamic properties, such as the self-intermediate scattering
function FS(k,τ ; t), where τ is the correlation delay time and t is the evolution or waiting time after the quench.
Specific predictions are presented for the deepest quench (to zero temperature). The predicted evolution of the
α-relaxation time τα(t) as a function of t allows us to define the equilibration time t eq (φ), as the time after which
τα(t) has attained its equilibrium value τ eq

α (φ). It is predicted that both, t eq (φ) and τ eq
α (φ), diverge as φ → φ(a),

where φ(a) is the hard-sphere dynamic-arrest volume fraction φ(a) (≈0.582), thus suggesting that the measurement
of equilibrium properties at and above φ(a) is experimentally impossible. The theory also predicts that for fixed
finite waiting times t , the plot of τα(t ; φ) as a function of φ exhibits two regimes, corresponding to samples that
have fully equilibrated within this waiting time (φ � φ(c)(t)), and to samples for which equilibration is not yet
complete (φ � φ(c)(t)). The crossover volume fraction φ(c)(t) increases with t but saturates to the value φ(a).
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I. INTRODUCTION

Classical and statistical thermodynamics deal with the
equilibrium states of matter [1,2]. Driving the system from
one equilibrium state to another, however, involves the passage
of the system through a sequence of instantaneous states that
do not satisfy the conditions for thermodynamic equilibrium
and, hence, constitute a nonequilibrium process [3,4]. The
description of these processes fall outside the realm of
classical and statistical thermodynamics, unless the sequence
of nonequilibrium states do not depart appreciably from a
sequence of equilibrium states. Such an idealized process
can be thought of as an infinite sequence of infinitesimally
small changes in the driving control parameter, after each of
which the system is given sufficient time to equilibrate. This
so-called quasistatic process is an excellent representation of
real process when the equilibration times of the system are
sufficiently short. However, when the equilibration kinetics
is very slow, virtually any change will involve intrinsically
nonequilibrium states whose fundamental understanding must
unavoidably be done from the perspective of a nonequilibrium
theory [5].

These concepts become particularly relevant for the de-
scription of the slow dynamics of metastable glass-forming
liquids in the vicinity of the glass transition [6,7]. It is well
known that the decay time of the slowest relaxation processes
(the so-called α-relaxation time τα) increases without bound
as the temperature T is lowered below the glass transition
temperature Tg . It is then natural to think that the equilibration
time of the system must also increase accordingly. To be more
precise, let us imagine that a glass-forming liquid, initially
at an arbitrary temperature T (i), is suddenly cooled at time
t = 0 to a final temperature T , after which it is allowed to
evolve spontaneously toward its thermodynamic equilibrium
state. Imagine that we then monitor its α-relaxation time τα(t)

as a function of the evolution or “waiting” time t elapsed after
the quench. We say that the system has equilibrated when
τα(t) reaches the plateau that defines its final equilibrium value
τ

eq
α (T ), which must only depend on the final temperature T .

The beginning of this plateau occurs at a certain value of the
waiting time t , which we refer to as the equilibration time
t eq(T ); this equilibration time must also depend on the final
temperature T .

There are indications from recent computer simulation
experiments [8,9] that in the metastable regime these two
characteristic times, τ

eq
α (T ) and t eq(T ), are related to each

other as t eq(T ) ∝ [τ eq
α (T )]η, with an exponent η � 1. This

implies that in order to measure the actual equilibrium value
τ

eq
α (T ) we have to wait, before starting the measurement of

τ
eq
α (T ), for an equilibration time t eq(T ) that will increase

essentially as fast as τ
eq
α (T ) itself. This poses an obvious

practical problem for the measurement of τ
eq
α (T ) when the

temperature T approaches the glass transition temperature
Tg , since sooner or later we shall be unable to wait this
required equilibration time. This situation then implies that
it is impossible to discard a scenario in which the equilibrium
α-relaxation time τ

eq
α (T ) diverges at a singular temperature

T (a), since the equilibration time t eq(T ) needed to observe this
divergence will also diverge at that temperature; i.e., it will be
impossible to equilibrate the system at a final temperature near
or below T (a) within experimental waiting times. Of course,
a measurement carried out at a finite t , will always report
a result for τα , but this result will correspond to τα(t), the
nonequilibrium value of the α-relaxation time registered at
that waiting time t . Thus, the analysis of these experimental
measurements cannot be based on the postulate that the system
has reached equilibrium; instead, one needs to interpret these
experiments in the framework of a quantitative theory of slowly
relaxing nonequilibrium processes.
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Until recently, however, no quantitative, first-principles
theory had been developed and applied to describe the slow
nonequilibrium relaxation of structural glass-forming atomic
or colloidal liquids. About a decade ago Latz [10] attempted
to extend the conventional mode coupling theory (MCT) of
the ideal glass transition [11–14], to describe the aging of
suddenly quenched glass-forming liquids. A major aspect
of his work involved the generalization to nonequilibrium
conditions of the conventional equilibrium projection operator
approach [15] to derive the corresponding memory function
equations in which the mode coupling approximations could
be introduced. Similarly, De Gregorio et al. [16] discussed
time-translational invariance and the fluctuation-dissipation
theorem in the context of the description of slow dynamics
in system out of equilibrium but close to dynamical arrest.
They also proposed extensions of approximations long known
within MCT. Unfortunately, in neither of these theoretical
efforts were quantitative predictions presented that could be
contrasted with experimental or simulated results in specific
model systems of structural glass formers.

In an independent but similarly aimed effort, on the
other hand, the self-consistent generalized Langevin equation
(SCGLE) theory of colloid dynamics [17–20] and of dynamic
arrest [21–25] has recently been extended to describe the
(nonequilibrium) spatially nonuniform and temporally non-
stationary evolution of glass-forming colloidal liquids. Such
an extension was introduced and described in detail in Ref. [26]
and will be referred to as the nonequilibrium self-consistent
generalized Langevin equation (NE-SCGLE) theory. As one
can imagine, the number and variety of the phenomena that
could be studied with this new theory may be enormous, and
to start its systematic application we must focus on simple
classes of physically relevant conditions. Thus, as a first simple
illustrative application, this theory was applied in Ref. [27] to
a model colloidal liquid with hard-sphere plus short-ranged
attractive interactions suddenly quenched to an attractive glass
state.

The aim of the present work is to start a systematic
exploration of the scenario predicted by this theory when
applied to the simplest irreversible processes in the simplest
and best-defined model system. In the present case we refer to
the irreversible isochoric evolution of a glass-forming liquid
of particles interacting through purely repulsive soft-sphere
interactions, initially at a fluidlike state, whose temperature
is suddenly quenched to a final value T (f ) = 0, at which the
expected equilibrium state is that of a hard-sphere liquid at
volume fraction φ. Such a process mimics the spontaneous
search for the equilibrium state of this hard-sphere liquid,
driven to nonequilibrium conditions by some perturbation
(shear, for example, [28,29]), which ceases at a time t = 0. One
possibility is that the system will recover its equilibrium state
within an equilibration time t eq(φ) that depends on the fixed
volume fraction φ. The other possibility is that the system ages
forever in the process of becoming a glass. The application of
the NE-SCGLE theory to these irreversible processes results
in a well-defined scenario of the spontaneous nonequilibrium
response of the system, whose main features are explained and
illustrated in this paper.

In the following section we provide a brief summary
of the NE-SCGLE theory, appropriately written to describe

the equilibration of a monocomponent glass-forming liquid
constrained to remain spatially uniform. Section III defines
the specific model to which this theory will be applied,
discusses the strategy of solution of the resulting equations,
and illustrates the main features of the results. Section IV
presents the scenario predicted by the NE-SCGLE theory for
the first possibility mentioned above, namely, that the system is
able to reach its thermodynamic equilibrium state. In this case
we find that the equilibrium α-relaxation time τ

eq
α (φ) and the

equilibration time t eq(φ) needed to reach it will remain finite
for volume fractions smaller than a critical value φ(a), but that
both characteristic times will diverge as φ approaches this
dynamic-arrest volume fraction φ(a) ≈ 0.582 and will remain
infinite for φ � φ(a). Although it is intrinsically impossible
to witness the actual predicted divergence, the theory makes
distinct predictions regarding the transient nonequilibrium
evolution occurring within experimentally reasonable waiting
times t .

In Sec. V we analyze the complementary regime, φ � φ(a),
in which the system, rather than reaching equilibrium within
finite waiting times, is predicted to age forever. In this regime
we find that the long-time asymptotic limit of S(k; t) will
no longer be the expected equilibrium static structure factor
S(eq)(k), but another, nonequilibrium but well-defined, static
structure factor, which we denote as S(a)(k) and which depends
on the protocol of the quench. Furthermore, contrary to
the kinetics of the equilibration process, in which S(k; t)
approaches S(eq)(k) in an exponential-like fashion, this time
the decay of S(k; t) to its asymptotic value S(a)(k) follows a
much slower power law.

In Sec. VI we put together the two regimes just described,
in an integrated picture, which outlines the predicted scenario
for the crossover from equilibration to aging. There we find
that the discontinuous and singular behavior underlying the
previous scenario is intrinsically unobservable, due to the
finiteness of the experimental measurements, which constrains
the observations to finite time windows. This practical but
fundamental limitation converts the discontinuous dynamic
arrest transition into a blurred crossover, strongly dependent
on the protocol of the experiment and of the measurements.

The main purpose of the present paper is to explain in
sufficient detail the methodological aspects of the application
of the theory, so as to serve as a reliable reference for the
eventual application of this nonequilibrium theory to the
same system but with different nonequilibrium processes (e.g.,
different quench protocols) or, in general, to different systems
and processes. Thus, we do not report here the results of the
systematic quantitative comparison of the scenario explained
here with available specific simulations or experiments, which
are being reported separately. Thus, the final section of the
paper briefly refers to the main features of those comparisons
and discusses possible directions for further work.

II. REVIEW OF THE NE-SCGLE THEORY

Let us mention that the referred NE-SCGLE theory de-
rives from a nonequilibrium extension of Onsager’s theory
of thermal fluctuations [26], and it consists of the time
evolution equations for the mean value n(r,t) and for
the covariance σ (r,r′; t) ≡ δn(r,t)δn(r′,t) of the fluctuations
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δn(r,t) = n(r,t) − n(r,t) of the local concentration profile
n(r,t) of a colloidal liquid. These two equations are coupled,
through a local mobility function b(r,t), with the two-time
correlation function C(r,r′; t,t ′) ≡ δn(r,t)δn(r′,t ′). A set of
well-defined approximations on the memory function of
C(r,r′; t,t ′), detailed in Ref. [26], results in the referred
NE-SCGLE theory.

As discussed in Ref. [26], for given interparticle interactions
and applied external fields, the NE-SCGLE self-consistent
theory is, in principle, able to describe the evolution of a liquid
from an initial state with arbitrary mean and covariance n0(r)
and σ 0(r,r′), towards its equilibrium state characterized by the
equilibrium local concentration profile neq(r) and equilibrium
covariance σ eq(r,r′). These equations are, in principle, quite
general and contain well-known theories as particular limits.
For example, ignoring certain memory function effects, the
evolution equation for the mean profile n(r,t) becomes the
fundamental equation of dynamic density functional theory
[30], whereas the “conventional” equilibrium SCGLE theory
[23] (analogous in most senses to MCT [11]) is recovered
when full equilibration is assumed and spatial heterogeneities
are suppressed. The NE-SCGLE theory, however, provides
a much more general theoretical framework, which, in prin-
ciple, describes the spatially heterogeneous and temporally
nonstationary evolution of a liquid toward its ordinary stable
thermodynamic equilibrium state. This state, however, will
become unreachable if well-defined dynamic arrest conditions
arise along the equilibration pathway, in which case the system
evolves towards a distinct and predictable dynamically arrested
state through an evolution process that involves aging as an
essential feature.

To start the systematic application of this general theory to
more specific phenomena we must focus on a simple class of
physical conditions. Thus, let us consider the irreversible evo-
lution of the structure and dynamics of a system constrained
to suffer a programmed process of spatially homogeneous
compression or expansion (and/or of cooling or heating).
Under these conditions, rather than solving the time-evolution
equation for n(r; t), we assume that the system is constrained
to remain spatially uniform, n(r; t) = n(t), according to a
prescribed time dependence n(t) of the uniform bulk con-
centration and/or to a prescribed uniform time-dependent
temperature T (t). Among the many possible programmed
protocols (n(t), T (t)) that one could devise to drive or to
prepare the system, in this paper we restrict ourselves to
one of the simplest and most fundamental protocols, which
corresponds to the limit in which the system, initially at an
equilibrium state determined by initial values of the control
parameters, (n(i),T (i)), must adjust itself in response to a
sudden and instantaneous change of these control parameters
to new values (n(f ),T (f )), according to the “program” n(t) =
n(i)θ (−t) + n(f )θ (t) and T (t) = T (i)θ (−t) + T (f )θ (t), with
θ (t) being Heaviside’s step function. Furthermore, just like
in the first illustrative example described in Ref. [27], here we
also restrict ourselves to the description of an even simpler
subclass of irreversible processes, namely, the isochoric
cooling or heating of the system, in which its number density
is constrained to remain constant, i.e., n(t) = n(i) = n(f ) = n,
while the temperature T (t) changes abruptly from its initial
constant value T (i) to a final constant value T (f ) at t = 0.

Under conditions of spatial uniformity, C(r,r′; t,t ′) can be
written as

C(|r − r′|,t ′ − t ; t)

= n

(2π )3

∫
dk exp[−ik · (r − r′)]F (k,τ ; t), (2.1)

with τ ≡ (t ′ − t) � 0, and where F (k,τ ; t) is the t-evolving
nonequilibrium intermediate scattering function (NE-ISF).
Similarly, the covariance σ (r,r′; t) can be written as

σ (|r − r′|; t) = n

(2π )3

∫
dk exp[−ik · (r − r′)]S(k; t),

(2.2)

with S(k; t) ≡ F (k,τ = 0; t) being the time-evolving static
structure factor. Under these conditions, the NE-SCGLE
theory determines that the time-evolution equation for the
covariance (Eq. (2.11) of Ref. [27]) may be written as an
equation for S(k; t) which, for t > 0, reads

∂S(k; t)

∂t
= −2k2D0b(t)n(f )E (f )(k)[S(k; t) − 1/nE (f )(k)].

(2.3)

In this equation the function E (f )(k) = E(k; n,T (f )) is the
Fourier transform (FT) of the functional derivative E[|r − r′|;
n,T ] ≡ [δβμ[r; n]/δn(r′)], evaluated at n(r) = n and T =
T (f ). As discussed in Refs. [26,27], this thermodynamic object
embodies the information, assumed known, of the chemical
equation of state, i.e., of the functional dependence of the
electrochemical potential μ[r; n] on the number density profile
n(r).

The solution of this equation, for arbitrary initial condition
S(k; t = 0) = S(i)(k), can be written as

S(k; t) = S(i)(k)e−α(k)u(t) + [nE (f )(k)]−1(1 − e−α(k)u(t)),

(2.4)

with

α(k) ≡ 2k2D0nE (f )(k), (2.5)

and with

u(t) ≡
∫ t

0
b(t ′)dt ′. (2.6)

In the equations above, the time-evolving mobility b(t) is
defined as b(t) ≡ DL(t)/D0, with D0 being the short-time self-
diffusion coefficient and DL(t) the long-time self-diffusion
coefficient at evolution time t . As explained in Refs. [26]
and [27], the equation

b(t) =
[

1 +
∫ ∞

0
dτ�ζ ∗(τ ; t)

]−1

(2.7)

relates b(t) with the t-evolving, τ -dependent friction coeffi-
cient �ζ ∗(τ ; t) given approximately by

�ζ ∗(τ ; t) = D0

24π3n

∫
dk k2

[
S(k; t) − 1

S(k; t)

]2

×F (k,τ ; t)FS(k,τ ; t). (2.8)

Thus, the presence of b(t) in Eq. (2.6) couples the formal
solution for S(k; t) in Eq. (2.4) with the solution of the
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nonequilibrium version of the SCGLE equations for the
collective and self NE-ISFs F (k,τ ; t) and FS(k,z; t). These
equations are written, in terms of the Laplace transforms (LTs)
F (k,z; t) and FS(k,τ ; t), as

F (k,z; t) = S(k; t)

z + k2D0S−1(k;t)
1+λ(k) �ζ ∗(z;t)

(2.9)

and

FS(k,z; t) = 1

z + k2D0

1+λ(k) �ζ ∗(z;t)

, (2.10)

with λ(k) being a phenomenological “interpolating function”
[23], given by

λ(k) = 1/[1 + (k/kc)2], (2.11)

with kc = 1.118 × kmax(t), where kmax(t) is the position of
the main peak of S(k; t). The simultaneous solution of
Eqs. (2.3)–(2.10) above, constitute the NE-SCGLE description
of the spontaneous evolution of the structure and dynamics of
an instantaneously and homogeneously quenched liquid.

Of course, one important aspect of this analysis refers to the
possibility that along the process the system happens to reach
the condition of dynamic arrest. For the discussion of this
important aspect it is useful to consider the long-τ (or small-z)
asymptotic stationary solutions of Eqs. (2.8) and (2.9), the
so-called nonergodicity parameters, which are given by [26]

f (k; t) ≡ lim
τ→∞

F (k,τ ; t)

S(k)
= λ(k; t)S(k; t)

λ(k; t)S(k; t) + k2γ (t)
(2.12)

and

fS(k; t) ≡ lim
τ→∞ FS(k,τ ; t) = λ(k; t)

λ(k; t) + k2γ (t)
, (2.13)

where the t-dependent squared localization length γ (t) is the
solution of

1

γ (t)
= 1

6π2n(f )

∫ ∞

0
dkk4

× [S(k; t) − 1]2λ2(k; t)

[λ(k; t)S(k; t) + k2γ (t)][λ(k; t) + k2γ (t)]
. (2.14)

Notice also that these equations are the nonequilibrium
extension of the corresponding results of the equilibrium
SCGLE theory (referred to as the “bifurcation equations”
in the context of MCT [11]), and their derivation from
Eqs. (2.8)–(2.10) follows the same arguments as in the
equilibrium case [18]. The solution γ (t) of Eq. (2.14) and the
mobility b(t) constitute two complementary dynamic order
parameters, in the sense that if γ (t) is finite [or b(t) = 0], then
the system must be considered dynamically arrested at that
waiting time t , whereas if γ (t) is infinite, then the particles
retain a finite mobility, b(t) > 0, and the instantaneous state
of the system is ergodic or fluidlike.

We recall that the first relevant application of Eq. (2.14) is
the determination of the equilibrium dynamic arrest diagram
in control-parameter space [which, in the present case, is the
density-temperature plane (n,T )]. This diagram determines
the region of fluidlike states, for which the solution γ eq(n,T )
[of Eq. (2.14), with S(k; t) = Seq(k; n,T )] is infinite. The
complementary region contains the dynamically arrested

states, for which γ eq(n,T ) is finite. The borderline between
these two regions is the dynamic arrest transition line. Due
to the complementarity of the dynamic order parameters γ (t)
and b(t), this curve is also the borderline between the region
where the mobility b(t) will reach its equilibrium value,
limt→∞ b(t) = beq(n,T ) � 0, and the region of arrested states,
where limt→∞ b(t) = 0. Thus, since beq(n,T ) = D∗(n,T ) ≡
DL(n,T )/D0, where DL(n,T ) is the equilibrium long-time
self-diffusion coefficient at the point (n,T ), this line is also the
isodiffusivity curve corresponding to D∗ = 0.

Let us end this summary by noticing that the NE-SCGLE
theory was originally developed having in mind a system
with underlying Brownian (not molecular) dynamics, in which
the Brownian particles diffuse between collisions with a
constant free-diffusion coefficient D0. This is the value of
DL(n,T ) in the absence of interparticle interactions. Thus, it
is natural to scale DL(n,T ) with D0 to define the dimensionless
long-time self-diffusion coefficient D∗(n,T ) ≡ DL(n,T )/D0.
As recently demonstrated [31,32], however, this is also an
adequate scaling for atomic liquids provided that D0 is given
by its kinetic-theory value. In fact, this scaling is instrumental
in appreciating the precise long-time dynamic equivalence
between Brownian and atomic liquids, discussed in these two
references and summarized, for example, in Fig. 2 of Ref. [32].
The corresponding scaling for the structural α relaxation time
τα is τ ∗ ≡ k2D0τα .

III. GENERAL FEATURES OF THE SOLUTION AND
A SPECIFIC ILLUSTRATION

Let us now discuss some general features of the solution of
the NE-SCGLE equations just presented. This discussion has
a general character, but for the sake of clarity we illustrate the
main concepts in the context of one specific application. Thus,
consider a monocomponent fluid of soft spheres of diameter
σ , whose particles interact through the truncated Lennard-
Jones (TLJ) pair potential (also referred to as Weeks-Chandler-
Andersen potential [33]), which vanishes for r � σ , but which
for r � σ is given, in units of the thermal energy kBT = β−1,
by

βu(r) = ε

[(
σ

r

)2ν

− 2

(
σ

r

)ν

+ 1

]
. (3.1)

The state space of this system is spanned by the volume fraction
φ = πnσ 3/6 and the reduced temperature T ∗ ≡ kBT /ε.

A. Thermodynamic framework: Local curvature of the free
energy surface

In order to apply Eqs. (2.3)–(2.10) to this model system, we
first need to determine its thermodynamic property E (f )(k).
As indicated above, this is the FT of the functional derivative
E[|r − r′|; n,T ] ≡ [δβμ[r; n]/δn(r′)], which can also be
written as E[|r − r′|; n,T ] = δ(r − r′)/n − c(|r − r′|; n,T ),
with c(r; n,T ) being the ordinary direct correlation function
[2]. This is an intrinsically thermodynamic property, related
with the equilibrium static structure factor S(eq)(k; n,T ) by the
Ornstein-Zernike (OZ) equation, which in Fourier space reads
nE(k; n,T )S(eq)(k; n,T ) = 1. The OZ equation is the basis for
the construction of the approximate integral equations of the
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equilibrium statistical thermodynamics of liquids [2]. In fact,
we employ one such approximation to determine nE(k; n,T )
for our soft-sphere system as nE(k; n,T ) = 1/S(eq)(k; n,T ),
in which we approximate the equilibrium static structure
factor S(eq)(k; n,T ) by its Percus-Yevick/Verlet-Weis
(PY-VW) approximation [33–35], S(eq)(kσ ; φ,T ∗,ν) ≈
S(PY -V W )(kσ ; φ,T ∗,ν) ≡ S

(PY -V W )
HS (λkσ ; λ3φ), with the

effective hard-sphere diameter λ ≡ σHS(T ∗,ν)/σ determined
by the blip function method [36] as λ(T ∗,ν) =
{1 − 3

∫ 1
0 dxx2exp[− 1

T ∗ ( 1
x2ν − 2

xν + 1)]}1/3. The function

S
(PY -V W )
HS (kσ ; φ) is the PY-VW static structure factor of the

fluid of hard spheres of diameter σ and volume fraction φ, i.e.,
S

(PY -V W )
HS (kσ ; φ) ≡ S(PY )(λwkσ ; φw), with φw ≡ φ − φ2/16

and λw ≡ (φw/φ)1/3, and with the function S(PY )(kσ ; φ)
being the solution of the OZ equation with Percus-Yevick
closure for the same HS fluid.

Let us emphasize that for the present purpose, approxima-
tions such as these must be regarded solely as a practical
and approximate mean to determine the thermodynamic
property nE(k; n,T ), which is essentially the local curvature
of the free energy surface at the state point (n,T ) [26,37].
This property directly determines the equilibrium struc-
ture factor S(eq)(k; n,T ) through the equilibrium relationship
nE(k; n,T )S(eq)(k; n,T ) = 1, and in practice we actually use
this relationship to determine nE(k; n,T ). The main message
of Eq. (2.3), however, is that the experimentally observable,
nonequilibrium, static structure factor S(k; t) is not determined
by any OZ equilibrium condition, but by Eq. (2.3) itself,
with the thermodynamic property nE(k; n,T ) driving the
nonequilibrium evolution in the manner indicated by its
explicit appearance in this equation.

B. Thermodynamic equilibrium vs dynamically arrested states

In what follows, we are interested in studying the scenario
revealed by the solution S(k; t) of Eq. (2.3), for the process
of isochoric equilibration (or lack of equilibration) of the
static structure of a system subjected to a temperature control
protocol T (t) = T (i)θ (−t) + T (f )θ (t), corresponding to an
instantaneous temperature quench to a final temperature T (f )

denoted simply as T . Thus, the system is assumed to be
prepared at an initial equilibrium homogeneous state char-
acterized by a bulk particle number density n and temperature
T (i), at which its initial static structure factor is S(k; t = 0) =
S(i)(k). Upon suddenly changing the temperature of this system
to the new value T , one normally expects that the system will
reach full thermodynamic equilibrium, i.e., that the long-time
asymptotic limit of S(k; t) will be the equilibrium static
structure factor S(eq)(k; n,T ) = 1/nE(k; n,T ). According to
Eq. (2.3), reaching this value is also a sufficient condition for
S(k; t) to reach a stationary state.

According to the same equation, however, this is not a
necessary condition for the stationarity of S(k; t), which could
also be attained if limt→∞ b(t) = 0, even in the absence of
thermodynamic equilibrium [i.e., even if limt→∞ S(k; t) 	=
1/nE(k; n,T )]. If the long-time stationary state attained is the
thermodynamic equilibrium state, we say that the system is
ergodic at the point (n,T ). The second condition, in contrast,
corresponds to dynamically arrested states, in which the

long-time asymptotic limit of S(k; t) might differ from the
expected thermodynamic equilibrium value S(eq)(k; n,T ) =
1/nE(k; n,T ). Clearly, these are two mutually exclusive and
fundamentally different classes of possible stationary states
which can only be distinguished if we know the long-time
limit of b(t). This is, however, not a thermodynamic property,
and, hence, the discrimination of the ergodic or nonergodic
nature of the state point (n,T ) must be based on a dynamic or
transport theory that allows the determination of b(t).

One such theory is precisely the SCGLE theory: To decide
if the long-time stationary state corresponding to the point
(n,T ) will be an ergodic or an arrested state one can use the
equilibrium static structure factor S(eq)(k; n,T ) in Eq. (2.14)
to calculate γ (eq)(n,T ). If the solution is infinite, we say
that the asymptotic stationary state is ergodic and, hence,
that at the point (n,T ) the system will be able to reach
its thermodynamic equilibrium state without impediment, so
that limt→∞ S(k; t) = 1/nE(k; n,T ). On the other hand, if the
solution for γ (eq)(n,T ) turns out to be finite, this means that
the system will become dynamically arrested and that the
long-time limit of S(k; t) at the point (n,T ) will not neces-
sarily be its thermodynamic equilibrium value S(eq)(k; n,T ) =
1/nE(k; n,T ). Instead, we shall have that limt→∞ S(k; t) =
S(a)(k), with a truly nonequilibrium structure factor S(a)(k),
different from S(eq)(k; n,T ) and obtained as an alternative
stationary solution of Eq. (2.3). In this manner, by calculating
γ (eq)(n,T ) at all state points (n,T ) one can scan the state space
to determine the region of dynamically arrested states of the
system.

We have employed in this manner the PY-VW approxima-
tion for the equilibrium static structure factor S(eq)(k; n,T )
of the TLJ soft-sphere model, to determine the region of
its fluidlike ergodic states and the region of its dynamically
arrested states. The resulting dynamic arrest transition line
is represented by the solid curve in Fig. 1 for the TLJ
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φ

10
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FIG. 1. (Color online) Dynamic arrest line (or isodiffusivity curve
with D∗ = 0) in the (φ,T ∗) state space of the TLJ fluid, Eq. (3.1), with
ν = 6. The vertical downward arrows represent two fundamentally
different classes of irreversible isochoric processes. In the first case,
the fixed volume fraction φ is smaller than the dynamic arrest volume
fraction φ(a) (=0.582), whereas in the second φ is larger than φ(a).
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fluid with ν = 6, whose T ∗ → 0 limit coincides with the
dynamic arrest volume fraction φ(a) of the hard-sphere liquid,
predicted to occur at φ(a) = 0.582 [8]. As indicated in the
figure (and as explained at the end of the previous section), this
transition line is also the isodiffusivity curve corresponding to
D∗ = 0. In addition, as demonstrated in Ref. [38], it is also an
isostructural curve, as well as an iso-φHS curve [corresponding
to φHS(φ,T ∗) = φ

(a)
HS ≈ 0.582]. Hence, one manner to derive

an equation that describes this dynamic arrest curve is to
write the equation for the iso-φHS curve corresponding to
φHS(φ,T ∗) = φ

(a)
HS . This can be done rather easily in the

low-temperature limit, in which, according to [38], for the TLJ
model φHS(φ,T ∗) may be approximated by the blip-function
method, yielding φHS(φ,T ∗) ≈ φ[1 − (3

√
π/2ν)

√
T ∗]. Thus,

the iso-φHS curve corresponding to φ
(a)
HS is described at low

temperatures by T ∗(a)(φ) ≈ (4ν2/9π )[(φ − φ
(a)
HS)/φ]2.

C. Method of solution of Eqs. (2.3) and (2.7)–(2.10)
for equilibration

For concreteness, let us consider the case in which the
system was initially prepared to be in the equilibrium state
corresponding to a point (φ,T ∗(i)) located in the fluidlike
region. We then have two fundamentally different possibilities,
also illustrated in Fig. 1, either the final point (φ,T ∗(f )) lies in
the ergodic region of the dynamic arrest diagram, or else it lies
in the region of dynamically arrested states. The first case is
achieved, for example, if the volume fraction of the isochoric
irreversible process is smaller than the dynamic arrest volume
fraction φ(a) = 0.582 of the hard-sphere liquid. This isochoric
quench (φ,T ∗(i)) → (φ,T ∗(f )) will then eventually lead to the
full equilibration of the system. In the second case, in which
the fixed volume fraction φ must be larger than φ(a) = 0.582
(and the final temperature sufficiently low), the solution of
Eqs. (2.3) and (2.7)–(2.10) will describe the irreversible aging
of the glass-forming liquid quenched to a point inside the
dynamically arrested region.

In either case, solving Eq. (2.3) for S(k; t) starts with the
formal solution in Eq. (2.4), written as

S∗(k; u) = S(i)(k)e−α(k)u + S
eq

f (k)(1 − e−α(k)u). (3.2)

This expression interpolates S∗(k; u) between its initial value
S(i)(k) = S(eq)(k; φ,T ∗(i)) and its expected long-time equi-
librium value S

eq

f (k) ≡ S(eq)(k; φ,T ∗(f )) = [n(f )E (f )(k)]−1.
Clearly, the solution S(k; t) in Eq. (2.4) can be written as

S(k; t) = S∗(k; u(t)), (3.3)

with u(t) defined in Eq. (2.6). The inverse function t(u)
is such that u(t(u′)) = u′ and t(u(t ′)) = t ′. The differential
form of Eq. (2.6) can be written as dt = du(t)/b(t). Upon
integrating this equation, we have that t = ∫ t

0 du(t ′)/b(t ′),
which can also be written, after the change of the integration
variable t ′, to u′ ≡ u(t ′), as

t(u) ≡
∫ u

0

1

b∗(u′)
du′, (3.4)

with the function b∗(u) defined as b∗(u) = b(t(u)). These
general observations greatly simplify the mathematical

analysis and the numerical method of solution of the full NE-
SCGLE theory under the particular conditions considered here.

To see this, let us consider a sequence S∗(k; un) of snapshots
of the static structure factor, generated by the simple expression
in Eq. (3.2) when the parameter u attains a sequence of
equally spaced values un, say un = n�u (with a prescribed
�u and with n = 0,1,2, . . .). The fact that S(k; t) can be
written as S(k; t) = S∗(k; u(t)) implies that this sequence will
be identical to the sequence S(k; tn) generated by the exact
solution in Eq. (2.4), evaluated at a different sequence tn
(n = 0,1,2, . . .), i.e., at a sequence of values of the time t , given
by tn = ∫ un

0 [1/b∗(u′)]du′. In other words, the nth member of
the sequence of static structure factors can be labeled either
with the label un, as S∗(k; un), or with the label tn, as S(k; tn).
For sufficiently small �u, the discretized form of the previous
relationship between tn and un can be written as

tn+1 = tn + �u/b∗(un). (3.5)

Thus, in practice what we do is to solve the self-consistent
system of Eqs. (2.7)–(2.11) with S(k; t) replaced with each
snapshot S(k; tn) = S∗(k; un) of the sequence of static structure
factors. This yields, among all the other dynamic properties,
the sequence of values b∗(un) of the function b∗(u). This
sequence can then be used in the recurrence relation in
Eq. (3.5) to obtain the desired time sequence tn, which allows
us to ascribe a well-defined time label to the sequence S(k; tn)
of static structure factors and to the sequence b(tn) of the
instantaneous mobility b(t). Of course, since the solution
of Eqs. (2.7)–(2.11) yields all the dynamic properties, we
also have in store the corresponding sequence of snapshots
of dynamic properties such as F (k,τ ; tn), FS(k,τ ; tn), the
α-relaxation time τα(tn), etc.

IV. EQUILIBRATION OF SOFT-SPHERE LIQUIDS

We have applied the protocol just described, which solves
the full NE-SCGLE theory [Eqs. (2.4)–(2.11)], to the descrip-
tion of the isochoric irreversible evolution of the structure
and the dynamics of the TLJ soft-sphere liquid, after the
instantaneous quench starting from an equilibrium fluid state.
To continue the analysis, however, it is convenient to discuss
separately the two mutually exclusive possibilities illustrated
by the two vertical arrows in Fig. 1. In this section we
concentrate on the conceptually simplest case of the full
equilibration of the system, and in the following section we
discus the process of dynamic arrest.

A. Ordered sequence of nonequilibrium static structure factors

Let us thus illustrate the isochoric quench in which both
the initial and the final points lie in the fluidlike region.
For concreteness, we consider a cooling process, T (i) >

T (f ), such that b(i) > b(f ) > 0, with T ∗(i) = 0.1, φ = 0.56
(<φ(a) = 0.582), and with the final temperature corresponding
to the deepest quench, T ∗(f ) = 0. The initial and final
equilibrium static structure factors, S(i)(k) = S(eq)(k; φ1,T

∗(i))
and S

eq

f (k) = S(eq)(k; φ1,T
∗(f )), are presented in Fig. 2.

To visualize the transient nonequilibrium relaxation of
S(k; t), we generate a sequence of snapshots S∗(k; un) using
Eq. (3.2) with u = un = n�u (n = 0,1,2, . . .) and with
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FIG. 2. (Color online) Snapshots of the time-evolving static
structure factor S∗(k; u) corresponding to the quench (φ,T ∗(i)) →
(φ,T ∗(f )) at fixed volume fraction φ = 0.56 and T ∗(i) = 0.1 and
T ∗(f ) = 0. The darker thick (black) solid line is the initial structure
factor S∗(k; u = 0) = S(i)(k). The lighter thick (blue) solid line is the
asymptotic limit S∗(k; u → ∞) = S

eq

f (k). The sequence of thinner
(green) solid lines represent S∗(k; u) for u = �u, 3�u, 5�u, and
7�u (from bottom to top), with �u = 0.01 (we use [σ 2/D0] as the
time unit). These six structure factors also correspond, according to
Eq. (3.4), to S(k; t) for t = 0, 0.036, 0.1, 0.2, 0.533, and ∞. (Inset)
Inverse relaxation constant α−1(k) = S

eq

f (k)/2k2D0.

�u = 0.01[σ 2/D0] [≈1/4α(k), for k = kmax, the position of
the main peak of S

eq

f (k)]. From now on we use [σ 2/D0] as
the time unit and σ as the unit length. In Fig. 2 we include
four representative intermediate snapshots of this sequence,
corresponding to u/�u = 1, 3, 5, and 7. Let us emphasize
that although these snapshots of the transient structure factor
are linear combinations of two equilibrium static structure
factors [namely, S(i)(k) and S

eq

f (k)], they themselves represent
fully nonequilibrium structures.

Figure 2 exhibits the fact that within the resolution �u =
0.01 employed to visualize S∗(k; u), this nonequilibrium
structure relaxes very quickly to its long-time equilibrium
limit S

eq

f (k) at most wave vectors, except in two regions:
In the vicinity of kmax (corresponding to the ordinary de
Gennes narrowing [39]), as appreciated in the figure, and in the
long-wavelength limit, k → 0, not apparent in the main figure,

but illustrated and discussed below. Thus, except in these
two wave-vector domains, the nonequilibrium snapshots of
S∗(k; u) shown in the figure are already indistinguishable from
S

eq

f (k). The fact that for large wave vectors, k > kmax, the struc-
ture S∗(k; u) approaches very fast its final equilibrium value
S

eq

f (k) is understood by the fact that α(k) = 2k2D0/S
eq

f (k)
increases with k2 while S

eq

f (k) decreases from its maximum
value towards its unit value at large k. To the left of kmax, on
the other hand, although α(k) decreases with k2, there is a
dramatic drop of the static structure factor from its large value
at the main peak towards the very small value of S

eq

f (k = 0) of
a strongly incompressible liquid. In support of this proposed
scenario, in the inset of Fig. 2 we plot the inverse relaxation
constant α−1(k) = S

eq

f (k)/2k2D0 as a function of k, which
clearly exhibits a dominant peak at k = kmax, and a divergence
at k = 0. This explains the quick thermalization of S∗(k; u)
in both, the large wave-vector domain and in the moderately
small wave-vector regime 0 < k � kmax.

In the really small wave-vector limit k → 0, however,
the 1/k2 divergence of ueq(k) dominates and prevents the
thermalization of S∗(k; u) within finite values of u. The
crossover from this long-wavelength perfect slowdown to
the faster moderately small wave-vector regime k � kmax

is revealed by zooming in at the small-k behavior of the
snapshots of S∗(k; u), as illustrated in Fig. 3(a). In contrast
with this rather trivial long-wavelength slowing down, the
slow relaxation at and around k = kmax has its origin in the
large value attained by S

eq

f (kmax), i.e., in the large strength of
the interparticle correlations of spatial extent similar to the
mean distance between the particles. Thus, this slowing down
of the main peak of the u-evolving static structure factor is
a nonequilibrium manifestation of the so-called cage effect.
In Fig. 3(b) we present a magnification of the snapshots
of S∗(k; u) of Fig. 2, exhibiting in more detail the slower
relaxation of the structure at these wave vectors.

B. Nonequilibrium u dependence of S∗(k; u) and b∗(u)

Let us notice that the simple expression for S∗(k; u) in
Eq. (3.2), which interpolates this function of u between S(i)(k)
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FIG. 3. (Color online) Magnification of the snapshots S∗(k; un) in Fig. 2 corresponding to (a) the long-wavelength limit k → 0 and (b) to
the neighborhood of the position kmax of the main peak of S

eq

f (k).
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FIG. 4. (Color online) (a) The function �S∗(k; u) = 1 − exp[−α(k)u] corresponding to three different wave vectors, k = 6.1, 7.26 (=kmax),
and 8.1, plotted as a function of the parameter u (dashed lines). The circles correspond to u = ueq (k) = 5α−1(k), where [1 − �S∗(k; ueq (k))] =
e−5. The dotted and the solid dark lines represent, respectively, the functions �b∗(u) and �b∗−1(u) [Eqs. (4.2) and (4.3)], and the solid
circle corresponds to the estimated equilibration value ueq = ueq (kmax). The inset compares the function t(u) calculated according to its exact
definition in Eq. (3.4) (solid line) and according to the approximation in Eq. (4.6). (b) Same information as in (a), but now plotted as a function
of the actual evolution time t ≡ ∫ u

0
1

b∗(u′) du′. In the main figure we plot �S(k; t) and in the inset we plot S(k; t).

and S
eq

f (k), may be written as

�S∗(k; u) ≡ S∗(k; u) − S(i)(k)

S
eq

f (k) − S(i)(k)
= 1 − e−α(k)u. (4.1)

This means that if we plot the static structure factor S∗(k; u)
as �S∗(k; u) vs the k-dependent variable [α(k)u], the results
for all the wave vectors k must collapse onto a master curve
independent of k and of the initial and final values S(i)(k)
and S

eq

f (k). In fact, such a master curve will be essentially
a simple exponential function. This simplicity, however, will
be partially lost if we plot �S∗(k; u) directly as a function
of the parameter u, since such exponential function, e−α(k)u,
will decay with u at a different rate α(k) for different values
of the wave vector k, as illustrated in Fig. 4(a). In fact, if
we define a k-dependent equilibration value ueq(k) by the
condition e−α(k)ueq (k) ≈ e−5, we have that ueq(k) ≡ 5α−1(k).
Thus, except for the arbitrary factor of 5, the inset of Fig. 2(a)
exhibits the wave-vector dependence of ueq(k). There we see
that ueq(k) attains its largest value at the wave vector kmax,
corresponding to the position of the main peak of S

eq

f (k). This
slowest mode imposes the pace of the overall equilibration
process, thus characterized by the k-independent equilibration
value ueq ≡ ueq(kmax) = 5S

eq

f (kmax)/2k2
maxD

0.
The previous discussion illustrates the properties of the

ordered sequence S∗(k; un) of snapshots of the function
S∗(k; u) for equally spaced values un of the parameter u.
This sequence of snapshots, however, does not fully reveal the
most important features of the real relaxation scenario implied
by the solution (2.4) of Eq. (2.3), which provides S(k; t)
as a function of the actual evolution time t . Nevertheless,
since S(k; tn) = S∗(k; u(tn)), these features are fully revealed
by simply relabeling the referred sequence S∗(k; un) using
the (not equally spaced) sequence of labels tn given by the
recurrence relation in Eq. (3.5). This results in the sequence
S(k; tn) of snapshots that describes the actual time evolution of
S(k; t). In order to carry out this program, however, we must
first determine the sequence b∗(un) needed in the referred
recurrence relation.

As indicated before, from any sequence of snapshots
S∗(k; un), with u = n�u (n = 0,1,2, . . .), we may generate
a sequence b∗(un) of values of the time-dependent mobility
b∗(u) by solving the self-consistent system of equations (2.7)–
(2.11) with S(k; t) replaced with S∗(k; un) for each snapshot.
The resulting sequence b∗(un) is a discrete representation
of the function b∗(u), shown in Fig. 4(a), whose resolution
in the parameter u may be improved arbitrarily by taking �u

as small as needed. The first feature to notice in the result
of this procedure is the fact that b∗(u) decays monotonically
from its initial value bi to its final value bf > 0. This implies
that the system will always remain fluidlike and will have no
impediment to reach its expected equilibrium state. We also
find that the function b∗(u) attains its asymptotic value bf for
u > ueq (≈0.2 for the quench illustrated in the figure).

In Fig. 4(a) we also present the results for b∗(u) plotted as

�b∗(u) ≡ b∗(u) − bi

bf − bi

. (4.2)

We see that this plot does not exhibit any simple relationship
between the decay of �b∗(u) and the decay of �S∗(k; u). In
the same figure, however, the results for b∗(u) are plotted as

�b∗−1(u) ≡ b∗−1(u) − b−1
i

b−1
f − b−1

i

. (4.3)

Plotted in this manner we observe a more apparent correlation
between the decay of both �S∗(kmax; u) and �b∗−1(u) with
the parameter u. This feature remains, of course, when these
properties are expressed as functions of the actual evolution
time t , as we now see.

C. Real-time dependence of S(k; t) and b(t)

Once we have determined the function b∗(u), using the
expression for t(u) in Eq. (3.4), or its discretized version
in the recursion relation of Eq. (3.5), we can determine the
desired real-time evolution of S(k; t) and b(t). In this manner
we determine that in our illustrative example the sequence
u = 0, 0.01, 0.03, 0.05, and 0.07 corresponds to the sequence
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FIG. 5. (Color online) (a) Snapshots of the nonequilibrium self intermediate scattering function FS(k,τ ; t) at k = kmax, corresponding to
the equilibration process in Fig. 2 for evolution times t = 0, 0.036, 0.1, 0.2, 0.533, and ∞. (b) Nonequilibrium evolution of the dimensionless
α-relaxation time, displayed as τα(k; t) itself (inset) and formatted as in Eq. (4.8) (main figure). The solid circle represents the equilibration
point [t eq ,τα(kmax; t eq )].

t = 0, 0.036, 0.1, 0.2, and 0.533. In the inset of Fig. 4(b) we
present the resulting time-evolution of S(k; t) for the same
three wave vectors as in Fig. 4(a). This inset emphasizes
the fact that S(k; t) evolves monotonically from its initial
value S(i)(k) to its final value S

eq

f (k), sometimes increasing
and sometimes decreasing, depending on the wave vector
considered. In order to exhibit a less detail-dependent scenario,
in the main frame of Fig. 4(b) we present the same information,
but formatted as �S(k; t), which is the relabeled version
(u → t = t(u)) of �S∗(k; u) in Eq. (4.1), namely, as

�S(k; t) ≡ S(k; t) − S(i)(k)

S
eq

f (k) − S(i)(k)
. (4.4)

We similarly relabel the definitions of �b∗(u) and �b∗−1(u)
in Eqs. (4.2) and (4.3) to define the functions �b(t) and
�b−1(t), which are also plotted in Fig. 4(b). The comparison
of this figure with Fig. 4(a) indicates that, except for the
stretched metric of t , the overall scenario described by the
u dependence illustrated in Fig. 4(a) is preserved in the t

dependence illustrated in Fig. 4(b).
Let us notice in particular that the existence of the

equilibration value ueq of the parameter u, beyond which
b∗(u) ≈ bf , allows us to define an equilibration time, t eq ,
as the time that corresponds to ueq through Eq. (3.4),

t eq ≡
∫ ueq

0

du′

b∗(u′)
. (4.5)

For our specific illustrative example, this yields t eq ≈ 48.
The fact that b∗(u) ≈ bf for u � ueq implies, according to
Eq. (3.4), that for u > ueq the function t(u) will be linear in u,
i.e.,

t(u) ≈ −a(ueq) + b−1
f u, (4.6)

with a(ueq) ≡ ∫ ueq

0 [1/bf − 1/b∗(u′)]du′. In the inset of
Fig. 4(a) we compare this asymptotic expression, applied to
our illustrative case [for which b−1

f = 285 and a(ueq) = 12.8],
with the actual t(u) calculated from Eq. (3.4).

D. Irreversibly evolving dynamics

Since for each snapshot of the static structure factor S(k; t)
the solution of Eqs. (2.7)–(2.11) determines a snapshot of
each of the dynamic properties of the system, the process
of equilibration may also be observed, for example, in the
t evolution of the collective and self-intermediate scattering
functions, F (k,τ ; t) and FS(k,τ ; t). In Fig. 5(a) we illustrate
this irreversible time evolution with the snapshots of the
self-ISF FS(kmax,τ ; t), corresponding to the same set of
evolution times tn as the snapshots of S(k; t) in Fig. 2. We
see that the function FS(k,τ ; t) starts from its initial value
FS(k,τ ; t = 0) = F

eq

S (k,τ ; φ,Ti = 0.1) and quickly evolves
with waiting time t towards the vicinity of its final equilibrium
value FS(k,τ ; t = ∞) = F

eq

S (k,τ ; φ,Tf = 0).
The equilibration process of FS(k,τα; t) can be best sum-

marized in terms of the dependence of the α-relaxation time
τα(k; t) as a function of the evolution time t . The α-relaxation
time may be defined by the condition

FS(k,τα; t) = 1/e. (4.7)

The dependence of τα(k; t) on the evolution time t can
be extracted from a sequence of snapshots of FS(k,τα; t),
such as those in Fig. 5(a). The results are illustrated in
Fig. 5(b), in which the solid line corresponds to τα(kmax; t).
The solid circle indicates the crossover from the t regime
where τα(kmax; t) is still in the process of equilibration, to
the regime where it has reached its final equilibrium value
τ

(f )
α (kmax) ≡ τ

eq
α (kmax; φ,Tf ). In the inset of the figure we

plot τα(kmax; t) itself and in the main figure we plot the same
information, but formatted as

�τα(k; t) ≡ τα(k; t) − τ (i)
α (k)

τ
(f )
α (k) − τ

(i)
α (k)

, (4.8)

with τ (i)
α (k) ≡ τ

eq
α (k; φ,Ti). In the same figure we also exhibit

similar results corresponding to two additional wave vectors,
different from kmax (dashed lines). These results show that the
equilibration time of τα(k; t) for these three wave vectors is
largely independent of k, and can be well approximated by the
equilibration time t eq defined in Eq. (4.5), in contrast with the
notorious wave-vector dependence of the predicted evolution
of the static structure factor illustrated in Fig. 4(b).
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FIG. 6. (Color online) Time-evolving α-relaxation time
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Let us finally mention another theoretical prediction re-
garding the kinetics of the equilibration process. This refers
to the similarity of the equilibration kinetics exhibited by the
time-dependent mobility b(t), the α-relaxation time τα(k; t)
at all wave vectors, and the static structure factor S(kmax; t)
at the wave vector kmax, when plotted in terms of the reduced
properties �b(t)−1, �τα(k; t), and �S(kmax; t). This similarity
is exhibited in Fig. 6 for the illustrative quench at fixed
φ = 0.56, and means that indeed the evolution of S(kmax; t)
[which is slower than the evolution of S(k; t) for other
wave vectors] sets the overall relaxation rate exhibited by
the dynamic properties �b(t)−1 and �τα(k; t). Thus, from
this point of view, we may use either of these characteristic
dynamic properties to describe the predicted kinetics of the
equilibration process.

E. Dependence on the initial temperature of the quench

Up to this point we have illustrated the main features of
the isochoric quench (φ,T ∗(i)) → (φ,T ∗(f )) at fixed volume
fraction φ = 0.56, using for concreteness the values T ∗(i) =
0.1 and T ∗(f ) = 0. We are now ready to analyze how the

scenario just described depends on the initial temperature
T ∗(i) and on the volume fraction φ at which we perform the
quench. Let us start by considering the dependence on T ∗(i).
Rather than attempting a comprehensive illustration of this
dependence in terms of the evolution of the static structure
factor S(k; t) and of the various dynamic properties, we use
the dimensionless mobility b(t) as a representative property
bearing the essential information about the equilibration
process. This k-independent property determines the mapping
from the parameter u to the real time t , through the definition
of the functions u(t) and t(u) in Eqs. (2.6) and (3.4).

Thus, in Fig. 7(a) we present plots of b−1(t) as a function
of t for three representative values of the initial temperature
T ∗(i), namely, T ∗(i) = 1.0, 0.1, and 0.01, keeping the same final
temperature T ∗(f ) = 0 and the same volume fraction φ = 0.56.
This figure reveals two remarkable features. In the first place,
the equilibration time t eq seems to be rather insensitive to the
temperature T ∗(i) of the initial state. In other words, the system
will reach the final equilibrium state in about the same time,
t eq ≈ 48, no matter if the initial temperature is T ∗(i) = 1.0,
0.1, or 0.01. To emphasize this feature we have highlighted the
common equilibration point of the three curves. The second
remarkable feature is that during the transient stage of the
equilibration process, the evolution of b−1(t) as a function
of t follows approximately a power law, b−1(t) ≈ Atx , with
the exponent x and the amplitude A depending on the initial
temperature T ∗(i). In the inset of the figure we exhibit the
power law fit of the transient, indicating the resulting value of
the exponent x and amplitude A.

Exactly the same trend is also reflected in the evolution
of the intermediate scattering function, as observed in the
results for the α-relaxation time shown in Fig. 7(b). This
information is important, since many times it is this dynamic
parameter that is monitored in simulations and in some
experiments.

F. Dependence on the volume fraction of the quench

Let us now discuss the dependence of the equilibration
process on the volume fraction φ. Once again we first use the
time evolution of b(t) to illustrate this dependence. In Fig. 8(a)
we plot b−1(t) as a function of t for a set of values of the
volume fraction φ, corresponding to the metastable regime of
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FIG. 7. (Color online) Nonequilibrium, time-dependent (a) mobility b(t) and (b) α-relaxation time τα(t), as a function of evolution time t ,
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φ. The dashed lines are the power laws b−1

f (φ) ≈ 4 × [t eq (φ)]1.05 and τ eq
α (φ) ≈ 0.025 × [t eq (φ)]1.05.

the hard-sphere liquid. According to these results, the inverse
mobility b−1(t ; φ) reaches its equilibrium value b−1

f (φ) after
a φ-dependent equilibration time t eq(φ). To emphasize this
prediction, the solid circles in the figure highlight the points
(t eq(φ),b−1

f (φ)). These highlighted points, as indicated in the
figure, align themselves to a good approximation along the
dashed line of the figure, corresponding to the approximate
relationship b−1

f (φ) ≈ 4 × [t eq(φ)]1.05.
This relationship between the equilibration time t eq(φ) and

bf (φ) is one of the most remarkable predictions of the present
theory, bearing profound physical implications. To see this,
let us recall that the dimensionless mobility bf (φ) is just
the scaled long-time self-diffusion coefficient D∗(φ,Tf ) ≡
DL(φ,Tf )/D0 of the fully equilibrated system at the final
point (φ,Tf ), which for the present isochoric quench down
to zero temperature, Tf = 0, is the dimensionless equilibrium
long-time self-diffusion coefficient of the hard-sphere liquid,
D∗

HS(φ) ≡ D∗(φ,Tf = 0). This property can be calculated
using the equilibrium version of the present theory [22] and, as
discussed below [see Fig. 9(b)], such calculation leads to the
prediction that D∗

HS(φ) vanishes at φ(a) = 0.582, according
to the power law D∗

HS(φ) ∝ (φ(a) − φ)2.2. As a consequence,
if t eq(φ) ≈ 0.25 × b−1

f (φ) [∝D∗−1
HS (φ)], we must expect that

as φ → φ(a) the equilibration time will diverge according to
t eq(φ) ∝ (φ(a) − φ)−2.2.

This predicted divergence of the equilibration time con-
stitutes a strong and interesting proposal, which requires,
of course, a critical assessment and validation. We return
to this discussion later in the paper, but at this point, let
us carry out a similar analysis, now using the α-relaxation
time τα(t ; φ) (whenever we omit the wave vector k as the
argument of τα(k,t ; φ) it is because a specific value for k

is being assumed fixed, most frequently k ≈ kmax). Thus,
in Fig. 8(b) we plot τα(t ; φ) as a function of t for the
same set of values of the volume fraction φ as in Fig. 8(a).
Here again we find that τα(t ; φ) reaches its equilibrium value
τ

eq
α (φ) after the same evolution time t eq(φ) as in the case

of b(t ; φ). Also here the solid circles highlight the points
(t eq(φ),τ eq

α (φ)), and the dashed line in the figure implies that
t eq(φ) ≈ 40 × [τ eq

α ]0.95(φ). This implies that the time t eq(φ)
required to equilibrate the system will grow at least about as
fast as the equilibrium value τ

eq
α of the α-relaxation time and

that both properties increase strongly with φ.
Although one can discuss additional features of the class

of irreversible process corresponding to the full isochoric
equilibration of the system after its sudden cooling, it is now
important to contrast the scenario just described with that of
the second class of irreversible processes. This involves the
dynamic arrest of the system and is the subject of the following
section.
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FIG. 9. (Color online) (a) Mobility function b∗(u) plotted as a function of the parameter u and of the difference (u(a) − u) (inset) for the
sudden isochoric cooling from the point (φ = 0.6,T ∗(i) = 0.1) to the point (φ = 0.6,T ∗(f ) = 0). (b) Scaled long-time self-diffusion coefficient
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HS(φ) ≡ DL(φ)/D0 of the hard-sphere liquid as a function of volume fraction φ and of the difference (φ(a) − φ) (inset).
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V. AGING OF SOFT-SPHERE LIQUIDS

Let us recall at this point that the NE-SCGLE description
of the spontaneous evolution of the structure and dynamics
of an instantaneously and homogeneously quenched liquid is
provided by the simultaneous solution of Eqs. (2.3)–(2.10). As
discussed in Sec. III B, there exist two fundamentally different
classes of irreversible isochoric processes, represented by the
vertical downward arrows in Fig. 1. In the previous section we
described the resulting scenario for the most familiar of them,
namely, the full isochoric equilibration of the system. In this
section we present the NE-SCGLE description of the second
class of irreversible isochoric processes, in which the system
starts in an ergodic state and ends in the region where it is
expected to become dynamically arrested.

Thus, let us continue considering the TLJ model system
introduced in Sec. III [Eq. (3.1), with ν = 6], subjected to the
sudden isochoric cooling at fixed volume fraction φ = 0.6,
larger than φ(a) = 0.582, from the point (φ,T ∗(i) = 0.1) in the
ergodic region, to the point (φ,T ∗(f ) = 0) in the region of
dynamically arrested states. By construction, the solution γ (i)

of Eq. (2.14), obtained using S(eq)(k; φ,T ∗(i)) as the structural
input, is γ (i) = ∞. In this sense, the present class of process is
identical to the first one, discussed in the previous section. The
main difference lies, of course, in the fact that in the present
case the solution of Eq. (2.14) for the squared localization
length γ (f ), obtained using the equilibrium static structure
factor S(eq)(k; φ,T ∗(f )) of the final point as input, will now
have a finite value.

To see the consequences of this difference, let us go back to
Sec. III C and consider the function S∗(k; u) in Eq. (3.2), with
0 � u � ∞. For each value of u we may use S∗(k; u) in the
bifurcation equation (2.14) for γ (t), now denoted as γ ∗(u).
Throughout the previous section it was implicitly assumed
that γ ∗(u) = ∞ for 0 � u � ∞, an assumption based on the
fact that the system started and ended in a fluidlike state. In
the present case, however, although the system starts with the
condition that γ ∗(u = 0) = ∞, we know that the final point
(φ,T ∗(f ) = 0) corresponds to an arrested state, so that γ (f ) ≡
γ ∗(u = ∞) has a finite value. This means that somewhere
between u = 0 and u = ∞ the function γ ∗(u) changed from
infinity to a finite value, and this then implies the existence of
a finite value u(a) of u, such that γ ∗(u) remains infinite only
within the interval 0 � u < u(a). Thus, in the present case the
simultaneous solution of Eqs. (2.3)–(2.10) starts in practice
with the precise determination of u(a).

A. Method of solution of Eqs. (2.3) and (2.7)–(2.10) for aging

To determine the critical value u(a), let us consider again the
sequence S∗(k; un) of snapshots of the static structure factor,
generated by the expression in Eq. (3.2) with un = n�u (n =
0,1,2, . . .). Since we have assumed that initially the system
is fluidlike, the value of u(a) cannot be u(a) = 0. Thus, let us
employ each snapshot of the sequence S∗(k; un), with n =
1,2, . . ., as the static input of Eq. (2.14), thus determining
the sequence γ ∗

n ≡ γ ∗(un) of values of γ ∗(u), which starts
with γ ∗

0 = ∞. If γ ∗
1 turns out to be finite, then one may take a

smaller u step �u, until this does not happen. For a sufficiently
small �u, there will be an integer na such that γ ∗

n = ∞ for

n < na and γ ∗
n is finite for n > na , i.e., such that una

< u(a) <

u(na+1). This process can be refined by decreasing �u, so
that one can determine u(a) with arbitrary precision for the
given initial and final conditions (φ,T ∗(i)) and (φ,T ∗(f )). For
example, one can readily perform this procedure for the quench
indicated by the right arrow of Fig. 1 [from the point (φ,T ∗(i) =
0.1) to the final point (φ,T ∗(f ) = 0) at fixed φ = 0.6], with the
result u(a)= 0.0128.

Once one has determined u(a) with the desired precision,
one can construct a new sequence ul of (N + 1) equally spaced
values of u, defined as ul ≡ l × (u(a)/N) with 0 � l � N ,
along with the corresponding sequence S∗(k; ul) of snapshots
of the static structure factor [using Eq. (3.2)]. Since the
sequence S∗(k; ul) is identical to the sequence S(k; tl) [with tl
such that ul = ∫ tl

0 b(t ′)dt ′], to each member of this sequence,
the self-consistent Eqs. (2.8)–(2.10) assigns a snapshot of the
full dynamics of the system. In particular, the use of Eq. (2.7)
generates a sequence of values b∗(ul) of the mobility b∗(u),
with arbitrary resolution (set by the number N of u steps). To
illustrate these concepts, in Fig. 9(a) we present the results for
b∗(u) corresponding to the specific quench under discussion.
Notice that, as expected, b∗(u) → 0 as u approaches u(a) from
below.

A simple ansatz to model this limiting behavior is

b∗(u) ≈ B0(u(a) − u)μ. (5.1)

In the inset of Fig. 9(a) we plot b∗(u) vs (u(a) − u) to
determine the value of the exponent μ and the prefactor B0,
with the result μ = 2.2 and B0 = 9.5. We performed similar
calculations varying the initial temperature T ∗(i), and found
the value μ = 2.2 of the exponent is independent of T ∗(i),
so that the dependence of b∗(u) on the initial temperature is
carried only in the prefactor B0. For example, we found that
B0(T ∗(i)) = 9.5, 33, and 490, for T ∗(i) = 0.1, 0.05, and 0.01,
respectively.

Another remarkable feature of the u dependence of b∗(u)
illustrated in the inset of Fig. 9(a) is its similarity with
the volume fraction dependence of the scaled long-time
self-diffusion coefficient of the fully equilibrated hard-sphere
system, D∗

HS(φ) ≡ DL(φ,Tf = 0)/D0. This property can be
calculated using the equilibrium version of the SCGLE theory
[22], and the results are exhibited in Fig. 9(b). As discussed
before [23], the theoretical prediction is that D∗

HS(φ) vanishes
at the dynamic arrest volume fraction φ(a) = 0.582. The results
of Fig. 9(b) show that in the vicinity of φ(a), the function
D∗

HS(φ) follows the power law D∗
HS(φ) ∝ (φ(a) − φ)2.2; i.e., it

vanishes at φ(a) with the same exponent as b∗(u) vanishes at
u = u(a).

1. Asymptotic decay b(t) ∝ t−η

At this point let us notice that the sequence b∗(ul) must be
identical to the sequence b(tl) of values of b(t) at the times tl ≡∫ ul

0 [1/b∗(u′)]du′. The sequence of times tl can be determined
by means of the approximate recurrence relationship in
Eq. (3.5), i.e.,

tl+1 = tl + �u/b∗(ul),

with �u ≡ u(a)/N , and it allows us to transform the sequence
b∗(ul) into the discrete representation b(tl) of the function
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FIG. 10. (Color online) Nonequilibrium mobility b(t) as a func-
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(φ = 0.6,T ∗(i) = 0.1) to the point (φ = 0.6,T ∗(f ) = 0). The inset
exhibits the long-t asymptotic decay b(t) ≈ b0t

−η described by
Eq. (5.6).

b(t). The results for b(t) are plotted in Fig. 10 to exhibit the
fundamentally different behavior of the functions b∗(u) and
b(t). While the former has a well-defined zero at a finite value
of its argument, namely, at u = u(a), the function b(t) decays
to zero in a much slower fashion. In fact, as we now discuss,
one of the main predictions of the NE-SCGLE theory is that
b(t) will remain finite for any finite time t , and only at t = ∞
the mobility will reach its asymptotic value of zero. Thus,
the system, in principle, will always remain fluidlike, and the
dynamic arrest condition b(t) = 0 will only be reached after
an infinite waiting time.

Let us actually demonstrate that the value of t correspond-
ing to u(a) is t (a) = ∞, and that the mobility b(t) decays as
a power law with t . To discuss the first issue, let us recall
Eq. (3.4), which writes the function u(t) as

t(u) =
∫ u

0

du′

b∗(u′)
, (5.2)

where the function b∗(u) is, of course, b∗(u) = b(t(u)).
According to this result, and to Eq. (5.1), we can write

t(u) − t(u0) =
∫ u

u0

du′/B0(u(a) − u′)μ

= (u(a) − u)−(μ−1)

(μ − 1)B0
− (u(a) − u0)−(μ−1)

(μ − 1)B0
(5.3)

for u in some vicinity u0 � u � u(a) of u(a). This implies that,
if the exponent μ is larger than unity, then t(u) will diverge as
u approaches u(a) according to

t(u) ≈ (u(a) − u)−(μ−1)

(μ − 1)B0
. (5.4)

As a consequence, the dynamic arrest time t (a) ≡ t(u(a)) will
be infinite, which is what we set out to demonstrate.

Let us now discuss the possibility that b(t) decays as a
power law with t . For this, let us invert the function t(u) in the

previous equation and write it as

u(t) ≈ u(a) − {(μ − 1)B0t}−
1

(μ−1) . (5.5)

Since, according to Eq. (2.6), b(t) = du(t)/dt , the time deriva-
tive of this asymptotic expression will yield the asymptotic
form for b(t), namely,

b(t) ≈ b0t
−η, (5.6)

with

b0 ≡ [(μ − 1)μB0]−
1

(μ−1) , (5.7)

and

η ≡ μ

(μ − 1)

(
or (η − 1) = 1

(μ − 1)

)
. (5.8)

The latter result implies that if one of the exponents (μ
or η) is larger than unity, then the other is also larger than
unity. It also implies that if one of them is larger than 2,
then the other is smaller than 2, and vice versa. In the inset
of Fig. 10 we compare the actual NE-SCGLE results for
b(t) in the main figure, with the approximate asymptotic
expression in Eq. (5.6) with a fitted exponent η, with the
result that η = 1.83. This value coincides with the expected
result η = μ/(μ − 1) with μ = 2.2. As indicated above, we
performed similar calculations varying the initial temperature
T ∗(i), and found that the scenario just described is indeed
independent of T ∗(i). Thus, in the asymptotic expression in
Eq. (5.6) only the prefactor b0 depends on T ∗(i), and the
approximate expression in Eq. (5.7) provides an indicative
estimate of its actual value.

2. Dynamically arrested evolution of S(k; t)

The properties of the nonequilibrium mobility function b(t)
that we have just described reveals the main feature of the
time evolution of the static structure factor S(k; t) when the
system is driven to a point (φ,T ∗) in the region of dynamically
arrested states. We refer to the fact that under such conditions,
the long-time asymptotic limit of S(k; t) will no longer be
the expected equilibrium static structure factor S(eq)(k; φ,T ∗),
but another, well-defined nonequilibrium static structure factor
S(a)(k), given by

S(a)(k) = S(i)(k)e−α(k)u(a) + S
eq

f (k)
(
1 − e−α(k)u(a))

. (5.9)

This nonequilibrium static structure factor not only depends
on the final point (φ,T ∗), but also on the protocol of the quench
(in the present instantaneous isochoric quench, this means on
the initial temperature T ∗(i)).

To see the emergence of this scenario, let us consider the
sequence S∗(k; ul) of snapshots of the static structure factor
generated with Eq. (3.2), for the finite sequence ul of (N + 1)
equally spaced values of u defined as ul ≡ l × (u(a)/N) with
0 � l � N . According to Eq. (5.2), and to its asymptotic
version in Eq. (5.4), in the present case the finite range
0 � u � u(a) maps onto the infinite physically relevant range
0 � t � ∞ of the evolution time t (in contrast with the equi-
libration processes studied in the previous section, in which
the infinite range 0 � u � ∞ maps onto the infinite range
0 � t � ∞). Since the sequence S∗(k; ul) is identical to the
sequence S(k; tl), with tl = ∫ ul

0 du′/b∗(u′), then the sequence
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of snapshots S(k; tl) describing the full evolution of S(k; t) will
be generated by a sequence of snapshots of S∗(k; u) with u only
in the range 0 � u � u(a). In other words, in the present case
none of the snapshots of S∗(k; u) with u � u(a) will map onto
any physically observable snapshot of S(k; t), and this applies
in particular to the snapshot S∗(k; u = ∞), corresponding to
the expected equilibrium static structure factor S(eq)(k). In
this manner, the long time limit of S(k; t), normally being
the ordinary equilibrium value S(eq)(k) (≡[nE (f )(k)]−1), is
now replaced by a nonequilibrium dynamically arrested static
structure factor S(a)(k) given, according to Eq. (3.2), by the
expression in Eq. (5.9).

Besides the remarkable prediction of the existence of this
well-defined nonequilibrium asymptotic limit of S(k; t), the
second relevant feature refers to the kinetics of S(k; t) as
it approaches S(a)(k). To exhibit this feature, let us subtract
Eq. (5.9) from Eq. (2.4). This leads to

S(k; t) − S(a)(k) = A(k)[e−α(k)[u(t)−u(a)] − 1], (5.10)

with

A(k) ≡ e−α(k)u(a){
S(i)(k) − S

eq

f (k)
}
. (5.11)

At long times, when [u(t) − u(a)] is small, this equation reads

S(k; t) − S(a)(k) ≈ A(k)α(k)[u(a) − u(t)]. (5.12)

From Eq. (5.5), however, we have that u(a) − u(t) ≈ {(μ −
1)B0t}−

1
(μ−1) , so that the previous long-time expression for

S(k; t) can be written as

S(k; t) − S(a)(k) ≈ D(k)t−
1

(μ−1) , (5.13)

with

D(k) ≡ A(k)α(k){(μ − 1)B0}−
1

(μ−1) . (5.14)

Thus, we conclude that, contrary to the kinetics of the
equilibration process, in which S(k; t) approaches S(eq)(k) in an
exponential-like fashion, this time the decay of S(k; t) to its sta-
tionary value S(a)(k) follows a power law. At very short times,
however, b(t) ≈ b(i), and hence, u(t) ≈ b(i)t . Thus, according
to Eqs. (2.4) and (2.6), we have that the very initial evolution
of S(k; t) might seem to approach its expected equilibrium
value S(eq)(k) = [nE (f )(k)]−1 in an apparently “exponential”
manner, with a relaxation time tapp ≈ 1/α(k)b(i). This apparent
initial exponential evolution, however, crosses over very soon
to the much slower long-time evolution of S(k; t) described by
the asymptotic expression in Eq. (5.13).

Figure 11 illustrates with a sequence of snapshots the
predicted nonequilibrium evolution of S(k; t) after the iso-
choric quench at φ = 0.6 from T ∗(i) = 0.1 to T ∗(f ) = 0.
There we highlight the initial static structure factor S(i)(k) =
S(eq)(k; φ,T ∗(i)) and the dynamically arrested long-time
asymptotic limit S(a)(k) of the nonequilibrium evolution of
S(k; t). For reference, we also plot the expected, but inacces-
sible, equilibrium static structure factor S(eq)(k; φ,T ∗(f )) =
1/nE(k; φ,T ∗(f )) corresponding to the final temperature
T ∗(f ) = 0. Regarding the kinetics of the nonequilibrium
evolution, in the inset we plot the evolution of the maximum
of S(k; t) as a function of t to illustrate the fact that S(k; t)
approaches S(a)(k) much more slowly, in fact, as the power
law [S(a)(k) − S(k; t)] ∝ t−0.83. For reference, we also plot the
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FIG. 11. (Color online) Snapshots of the nonequilibrium evo-
lution of S(k; t) [thin solid (green) lines] corresponding to the
isochoric quench at fixed volume fraction φ = 0.6, from T ∗(i) = 0.1
to T ∗(f ) = 0. The dashed (black) line is the initial structure factor
S(i)(k). The dotted (blue) line is S

eq

f (k). The thick solid (red) line is
the dynamically arrested asymptotic solution Sa(k) of Eq. (2.3), given
by Eq. (5.9). In the inset, the solid line is the maximum of S(k; t) as a
function of the evolution time t , and the dashed line is the maximum
of [S(i)(k)e−α(k)b(i) t + [nE (f )(k)]−1(1 − e−α(k)b(i) t )].

maximum of the function [S(i)(k)e−α(k)b(i)t + [nE (f )(k)]−1(1 −
e−α(k)b(i)t )], which, according to Eq. (3.2), would describe the
evolution of S(k; t) if b(t) remained constant, b(t) = b(i).

B. Aging of the dynamics

Let us now discuss how the scenario just described man-
ifests itself in the nonequilibrium evolution of the dynamics.
We first recall that for each snapshot of the static structure
factor S(k; t), the solution of Eqs. (2.7)–(2.11) determines a
snapshot at waiting time t of each of the dynamic properties
of the system. Thus, the process of dynamic arrest may also
be observed, for example, in terms of the t evolution of
the self-intermediate scattering function FS(k,τ ; t) or of the
α-relaxation time τα(k; t). In Fig. 12(a) we present a sequence
of snapshots of the ISF FS(k,τ ; t) (thin solid lines), evaluated
at the fixed wave vector k = 7.1, plotted as a function of
correlation time τ , for a sequence of waiting times t after
the sudden temperature quench from T ∗(i) = 0.1 to T ∗(f ) = 0
at fixed volume fraction φ = 0.6.

In the figure we highlight with the dashed line the initial
ISF FS(k,τ ; t = 0). The (arrested) nonequilibrium asymptotic
limit F

(a)
S (k,τ ) ≡ limt→∞ FS(k,τ ; t) is indicated by the solid

line, whereas the dotted line denotes the inaccessible equilib-
rium ISF F

(eq)
S (k,τ ), i.e., the solution of Eqs. (2.8)–(2.11) in

which the final equilibrium static structure factor S(eq)(k; φ =
0.6,T ∗(f ) = 0) (also inaccessible) is employed as static input.
We observe that at t = 0, FS(k,τ ; t) shows no trace of dynamic
arrest, but as the waiting time t increases, its relaxation time
increases as well. In the figure we had to stop at a finite waiting
time, but the theory predicts that the ISF FS(k,τ ; t) will always
decay to zero for any finite waiting time t , and continues
to evolve forever, yielding always a finite, ever-increasing,
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FIG. 12. (Color online) (a) Sequence of snapshots of the intermediate scattering function FS(k,τ ; t) at k = 7.1 [thin solid (green) lines]
plotted as a function of correlation time τ for a sequence of values of the waiting time t (=0.25, 5.6, 106, 400, 590, and 1600) after the sudden
temperature quench at fixed volume fraction φ = 0.6, from T ∗(i) = 0.1 to T ∗(f ) = 0. The dashed line is the initial ISF FS(k,τ ; t = 0), the thick
solid (red) line is the nonequilibrium asymptotic limit F

(a)
S (k,τ ) ≡ FS(k,τ ; t = ∞), and the dotted (blue) line is the expected (but inaccessible)

equilibrium ISF corresponding to the hard-sphere system at φ = 0.6. (b) Same sequence of snapshots of FS(k,τ ; t) plotted as a function of the
time t scaled with the α-relaxation time τα(t). The dot-dashed line here is the stretched exponential 0.624 × exp [−0.528(t/τα)0.82].

α-relaxation time τα(k; t). The relaxation of FS(k,τ ; t) is
characterized by a fast initial decay (β relaxation) to an
increasingly better defined plateau, whose height f0(k) is not
determined by the expected equilibrium ISF F

eq

S (k,τ ), but by
the nonequilibrium asymptotic limit F (a)

S (k,τ ). In other words,
f0(k) is the “true” nonequilibrium nonergodicity parameter
f

(a)
S (k) ≡ limτ→∞ F

(a)
S (k,τ ).

From this sequence of snapshots of FS(k,τα; t) we can
extract the t evolution of the α-relaxation time τα(k; t) defined
in Eq. (4.7). The results allow us to notice one of the main
features of the predicted long-τ decay of FS(k,τ ; t), namely,
the long-time collapse of the curves representing FS(k,τ ; t),
corresponding to different evolution times t [like those in
Fig. 12(a)], onto the same stretched-exponential curve upon
scaling the correlation time τ with the corresponding τα(k; t).
In other words, at long times FS(k,τ ; t) scales as

FS(k,τ ; t) ≈ f0e
−a0( τ

τα (k;t) )β
, (5.15)

where f0 is the height of the plateau of F
(a)
S (k,τ ) and a0 =

1 + ln f0 [so that FS(k,τα; t) = e−1], and with β being a fitting
parameter. This scaling is illustrated in Fig. 12(b) with the

sequence of results for FS(k,τ ; t) in Fig. 12(a) now plotted
in this scaled manner, which are then well represented by the
stretched-exponential function above, with f0 = 0.624, a0 =
0.528, and β = 0.82.

The nonequilibrium evolution of the dynamics can be
summarized by plotting τα(k; t) as a function of waiting time
t . This is done here in Fig. 13, where we plot τα(t) [≡τα(k =
7.1,t)] as a function of t . The thick dark solid line in Figs. 13(a)
and 13(b) derive from the sequence of snapshots of FS(k,τα; t)
in Fig. 12(a), corresponding to the quench at φ = 0.6 with
initial temperature T ∗(i) = 0.1. As indicated in these figures,
at long waiting times we find that τα(k; t) increases with t

according to a power law that is numerically indistinguishable
from τα(t) ∝ tη with η ≈ 1.83. In other words, the present
theory predicts, taking into account Eq. (5.6), that at long
waiting times, τα(k; t) diverges with t with the same power
law as b−1(t).

Besides these results, Fig. 13(a) also presents theoretical
results for two additional quench programs that differ only in
the initial temperature, namely, T ∗(i) = 0.05 and T ∗(i) = 0.01.
These three initial temperatures lie above the dynamic arrest
transition temperature T ∗(a)(φ) corresponding to the isochore
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FIG. 13. (Color online) Waiting-time dependence of the α-relaxation time τα(t ; T ∗(i),φ) (defined in the text) after the sudden temperature
quench at fixed volume fraction φ, from an initial temperature T ∗(i) to a final temperature T ∗(f ) = 0. In (a) we present the results for the initial
temperatures T ∗(i) = 0.1, 0.05, and 0.001 at the same volume fraction φ = 0.6. In (b) we fix the initial temperature T ∗(i) = 0.1 and present
results for φ = 0.6 and other volume fractions. The dashed lines indicate the asymptotic power law τα(t) ∝ Atx that fits the results in the
indicated regimes.

052306-15
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φ = 0.6, which is T ∗(a)(φ = 0.6) = 0.004. The first feature
to notice is that the detailed waiting time dependence of τα

at short times may be strongly quench-dependent, but the
asymptotic power law τα(t) ∝ tη with the exponent η ≈ 1.83
is independent of the initial temperature T ∗(i). Complementing
this information, Fig. 13(b) describes the dependence of the
evolution of τα(t ; T ∗(i),φ) on the value of the volume fraction
φ at which these isochoric processes occur, assuming that each
of them start and end at the same initial and final temperatures,
T ∗(i) = 0.1 and T ∗(f ) = 0. The main feature to notice in these
results is that the long-time asymptotic growth of τα(t ; φ)
with waiting time t is also characterized by the power law
τα(t) ∝ t1.83.

VI. CROSSOVER FROM EQUILIBRATION TO AGING

Of course, one could continue describing the predictions of
the NE-SCGLE theory regarding the detailed evolution of each
relevant structural and dynamic property of the glass-forming
system along the process of equilibration or aging. At this
point, however, we would like to unite the main results of
the previous two sections in a single integrated scenario that
provides a more vivid physical picture of the predictions of
the present theory. With this intention, in Fig. 14(a) we have
put together the results for the isochoric evolution of τα(t ; φ)
previously presented in Figs. 8(b) and 13(b), corresponding
to the quench at fixed volume fraction φ, from an initial
temperature T ∗(i) = 0.1 to a final temperature T ∗(f ) = 0, for
volume fractions φ smaller and larger than φ(a) = 0.582.

Displaying together these results allows us to have a
richer and more comprehensive scenario of the transition from
equilibration processes to aging processes in the soft-sphere
glass-forming liquid, discussed separately in the previous two
sections. According to the NE-SCGLE theory, the dynamic
arrest transition is, in principle, a discontinuous transition,
involving the abrupt passage from one pattern of evolution
(equilibration) to the other (aging) when the control parameter
φ crosses the singular value φ(a) = 0.582. The discontinuous
nature of this kinetic transition is rooted in the abrupt transition
contained in the equilibrium version of the SCGLE theory,

which actually predicts the existence and location of the dy-
namic arrest transition line (see Fig. 13). The zero-temperature
limit of this transition line corresponds to the critical volume
fraction φ(a) = 0.582. Thus, the evolution of the system after
the temperature quench from an initial temperature T ∗(i) = 0.1
to a final temperature T ∗(f ) = 0 is dramatically different if the
volume fraction of the isochoric process is smaller or larger
than this critical volume fraction.

However, in order to actually witness this dramatic dif-
ference, we would have to perform observations at volume
fractions infinitesimally closer to φ(a) and within an evolution
time window much larger (in fact, infinite) than in any real
experiment or simulation. In fact, what we would like to
illustrate now is that the experimental observation of the
consequences of this theoretically predicted singularity will
be blurred by this unavoidable finiteness of the time window
of any experimental observation. To see this, let us display the
same information presented in Fig. 14(a), which plots τα(t ; φ)
as a function of t for a sequence of volume fractions φ, in
a complementary format. This is done in Fig. 14(b), which
plots τα(t ; φ) as a function of φ for a sequence of waiting
times t .

The main feature to notice in each of the curves correspond-
ing to a fixed waiting time t , is that one can distinguish two
regimes in volume fraction, namely, the low-φ (equilibrated)
regime and the high-φ (nonequilibrated) regime, separated in
a continuous fashion, and not as an abrupt transition, by a
crossover volume fraction φ(c)(t). Focusing, for example, on
the results corresponding to t = 103, we notice that φ(c)(t =
103) ≈ 0.57. In Fig. 14(b) we have highlighted the crossover
points φ = φ(c)(t), τα(t,φ) = τ

eq
α (φ(c)), corresponding to each

waiting time t considered. We observe that the resulting
crossover volume fraction φ(c)(t) first increases rather fast with
t , but then slows down considerably, reaching a theoretical
maximum crossover volume fraction, limt→∞ φ(c)(t), given
by φ(a) = 0.582, as indicated in the inset of the figure.

The scenario illustrated by Fig. 14(b) has additional
physical implications. Although it is impossible to witness
the infinite-time consequences of the theoretically predicted
singular dynamic arrest transition, it is important to stress
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FIG. 14. (Color online) (a) Waiting time dependence of the α-relaxation time τα(t ; φ) for a sequence of fixed volume fractions (the arrow
indicates increasing φ). (b) φ dependence of the α-relaxation time τα(t ; φ) for the sequence of fixed waiting times t = 100, 101, 102, 103, and 104

(from bottom to top). The dashed line is τ eq
α (φ) ≡ limt→∞ τα(t ; φ), which is the equilibrium α-relaxation time of the hard-sphere system,

predicted by the equilibrium SCGLE theory. The solid circles highlight the crossover points (φ(c)(t),τ eq
α (φ(c))) for each waiting time t shown.

The inset of (b) shows the evolution of the crossover volume fraction φ(c)(t) predicted by the NE-SCGLE theory (solid line) and determined in
the simulations of Ref. [8] (solid squares).
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that its finite-time predictions, such as those illustrated in this
figure, could be corroborated by performing measurements
at intentionally finite, accessible waiting times. It is thus
important to test if these predictions make sense by comparing
them with available experimental or simulation data. In this
regard, we can advance that the picture that emerges from the
predicted dependence of τα(t ; φ) on waiting time and volume
fraction, just illustrated in Fig. 14, is fully consistent with
the most relevant qualitative features observed in a simulation
experiment consisting precisely of the equilibration of a hard-
sphere liquid, initially prepared in a nonequilibrium state [8].
In fact, such simulation experiment was originally inspired by
the theoretical scenario offered by the present nonequilibrium
theory. To have an idea of the level of agreement, in the
inset of Fig. 14(b) we have included the simulation data for
the evolution of the crossover volume fraction φ(c)(t) with
waiting time reported in Ref. [8]. The comparison between
the predicted full dependence of τα(t ; φ) on volume fraction
at various waiting times [displayed in Fig. 14(b)] and the
corresponding simulation data in Fig. 2 of Ref. [8] turns
out to exhibit the same degree of agreement, as can be
observed in Fig. 3(c) of Ref. [40]. In later work, however,
we shall analyze in detail other aspects of the systematic
comparison between the predictions of the NE-SCGLE theory
and available simulation results, which does confirm this
general qualitative agreement.

Another manner to test the predictive power of the present
theory is to exhibit its relevance in interpreting the wealth
of available experimental data on the equilibration and aging
processes in glass-forming liquids and glasses. Many such
experimental data are very well fitted by phenomenological
models and theories, and it is interesting to see if the predic-
tions of our theory are consistent with the main features and
trends described by the most successful of these phenomeno-
logical models. For example, the Tool-Narayanaswamy model
[41,42], summarized in recent papers by T. Hecksher et al.
[43] and by Richert [44], interpret aging in terms of a so-
called internal (or “material”) time. These models, which are
commonly used in industry for predicting aging effects [45],
describe the highly nonlinear aging processes in terms of a
formally linear convolution integral. Although the resulting
description turns out to capture the experimentally observed
behavior, the fundamental reason for its success is not yet fully
understood. In fact, one important open question is if the very
existence of an internal clock has a sound physical basis, or if
it is just a convenient mathematical construction.

In this context, it is important to notice that the structure
of the NE-SCGLE equations is indeed consistent with the
notion of an internal clock. To see this, let us notice that
the variable u(t), defined in Eq. (2.6) of our paper in terms
of the dimensionless mobility b(t), plays the role of the
dimensionless reduced time (or inner clock), denoted as
t̃(t) in Eq. (4) of Hecksher et al. or as ζ (t) in Eq. (1) of
Richert’s paper. Similarly, our dimensionless mobility b(t) can
be identified with the structural clock rate γ (t) of Hecksher
et al., which is denoted as 1/τ (t) in Richert’s paper. In
addition, it is not difficult to see that our time-evolution
equation for the nonequilibrium static structure factor S(k; t)
[Eq. (2.3) of our paper] has the same mathematical structure of
the generic nonlinear equation dXt/dt = −(Xt − X∞)/τ (Xt )

which, according to Richert, describes aging. As a result, the
formal solution for S(k; t) in Eq. (2.4) of our paper has the
same structure as the generic solution in Eq. (2) of Richert’s
paper, namely, Xt = X∞ + (X0 − X∞) exp[− ∫ t

0 dt ′/τ (t ′)].
Discussing the detailed implications of these mathematical
similarities must, however, be the subject of a separate report.

VII. CONCLUDING REMARKS

In summary, in this work we have started the systematic
exploration of the predicted NE-SCGLE scenario of the
irreversible isochoric evolution of a soft-sphere glass-forming
liquid whose temperature is suddenly quenched from its initial
value T (i) to a final value T (f ) = 0. As we explained here, the
response falls in two mutually exclusive possibilities: Either
the system will reach its new equilibrium state within an
equilibration time t eq(φ) that depends on the fixed volume
fraction φ, or the system ages forever in the process of
becoming a glass.

In the first case the equilibrium α-relaxation time τ
eq
α (φ),

and the equilibration time t eq(φ) needed to reach thermody-
namic equilibrium, are predicted to remain finite for volume
fractions smaller than a critical value φ(a) ≈ 0.582, but as φ

approaches this hard-sphere dynamic-arrest volume fraction,
both characteristic times will diverge and will remain infinite
for φ � φ(a). Although it is intrinsically impossible to witness
the actual predicted divergence, the theory makes distinct
predictions regarding the transient nonequilibrium evolution
occurring within experimentally reasonable waiting times t ,
which could, thus, be compared with realizable experiments
or simulations.

This applies even more to the predictions regarding the
complementary regime, φ � φ(a), in which the system, rather
than ever reaching equilibrium, is predicted to age forever. As
discussed in the previous section, under these circumstances
the long-time asymptotic limit of S(k; t) will no longer be the
expected equilibrium static structure factor S(eq)(k), but the
nonequilibrium, but well-defined, dynamically arrested static
structure factor S(a)(k). Furthermore, S(k; t) is predicted to
approach S(a)(k) in a much slower fashion (a power law),
in contrast with the exponential-like manner in which S(k; t)
approaches S(eq)(k) when the system equilibrates.

Putting together the two regimes just described, we have
presented the predicted scenario for the crossover from
equilibration to aging. As discussed in the previous section,
the discontinuous and singular behavior predicted by the (MCT
or SCGLE) theories is intrinsically unobservable in practice,
due to the finiteness of the time windows of experimental
measurements. This forces the discontinuous dynamic arrest
transition to appear as a blurred crossover, which may depend
on the protocol of the experiment and of the measurements.
Testing these predictions by systematically comparing them
with available experimental or simulation data is an issue that
we leave for future studies, since the main purpose here was
to provide the details of the methodologies needed to solve
the equations that define the NE-SCGLE and to illustrate its
use with the application to the specific system and processes
considered here.

Nevertheless, it is important to notice that a considerable
conceptual difference may arise in the interpretation of specific
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simulation data if one adopts the perspective provided by the
present theory, compared to more conventional perspectives.
For example, Berthier and Witten [46] find that their computer
simulation dynamic data “show evidence of an avoided mode-
coupling singularity near φMCT ≈ 0.592” and determine a
singular volume fraction φ0 ≈ 0.635 through the apparent
divergence of their measured relaxation times (which they
assume to correspond to fully equilibrated systems). From
our perspective, however, it is not difficult to convince oneself
that our singular volume fraction φ

(a)
HS = 0.582 is conceptually

identical to what Berthier and Witten (and most anyone) refer
to as φMCT , and that the dynamic arrest transition line in
Fig. 1 of our paper corresponds to what Berthier and Witten
refer to as the mode-coupling transition line, TMCT (φ) in their
Fig. 2. The differences are that we refer to the TLJ liquid,
rather than to harmonic spheres, and that we employ the
nonequilibrium extension (NE-SCGLE) of the SCGLE theory
instead of conventional MCT (whose nonequilibrium version
is not yet available).

One should not confuse, however, the avoided singularity at
φ

(a)
HS = 0.582 with the unavoidable singularity of mechanical

nature to jammed, stable packings of hard spheres found
when its volume fraction φ approaches its random close
packing (RCP) value φRCP = 0.637 [47]. The dynamic arrest
singularity predicted by MCT (and by our equilibrium SCGLE
theory) can be said to be the amorphous kinetic version
of the thermodynamic equilibrium crystallization transition.
Thus, when the volume fraction of an equilibrated hard-
sphere system reaches its melting point φ(m) ≈ 0.54, all
the constituent particles are dynamically arrested, in the
sense that the equilibrium long-time self-diffusion coefficient
D

eq

L vanishes. Thermal motion, however, keeps the particles
rattling within the finite localization length γ allowed by their
rigid cage of neighbors. This length decreases with further
compression down to γ = 0, a limiting value that must be the
signature of the transition from localized thermal motion to
collective mechanically jammed conditions, expected to occur
in the monodisperse hard-sphere system at the hexagonal close
packing (HCP) volume fraction φHCP ≈ 0.74. Thus, in the
interval φ(m) � φ < φHCP , the state of the equilibrium crystal
is characterized by D

eq

L = 0 and γ > 0.
In contrast, in sufficiently polydisperse samples, the HS

system remains in its ergodic liquid state well beyond
the freezing volume fraction φ(f ) = 0.494. The resulting
metastable states are characterized by D

eq

L > 0, τ eq
α < ∞, and

γ = ∞. MCT and the equilibrium SCGLE theory provide
the equilibrium value of these dynamic order parameters
and predict a transition to dynamically arrested states char-
acterized by the values D

eq

L = 0, τ
eq
α = ∞, and γ > 0 at

a volume fraction φ(a) (which the SCGLE theory locates
at φ(a) = 0.582). An ideal material with these properties in
the interval φ(a) � φ < φRCP is an equilibrium glass, whose
experimental observation is impossible since its equilibration
waiting time t

eq
w is as infinite as τ

eq
α . Nevertheless, just like

the equilibrium HS crystal becomes jammed at φHCP , this
equilibrium glass must also become mechanically jammed
at its RCP volume fraction φRCP = 0.637, at which the
localization length γ should be expected to vanish. Thus, the
fundamental difference between dynamic arrest and jamming
is that dynamic arrest is characterized by the passage of γ from

infinity to a finite value, whereas jamming is expected to occur
when γ → 0.

Let us clarify that, according to our theory, the measured α

relaxation time τα(tw), experimentally determined within the
finite equilibration or waiting times of a given experiment or
simulation, may always remain finite within finite observation
times, as illustrated in Fig. 14(b) of our paper. It is the
equilibrium α relaxation time τ

eq
α that falls out of the reach

of finite-time measurements as soon as φ reaches the value
φ(a). Thus, any real experimental measurement, performed
within finite experimental times will only register a blurred
picture, or the “vestige,” of the predicted divergence (i.e.,
the MCT avoided divergence). The main contribution of
the present paper is, hence, this proposed physical meaning
of the avoided singularity at φ(a) and the mechanisms for
its avoidance. As indicated at the end of the previous
section, we can say that the resulting scenario is consistent
with the most relevant qualitative features observed in the
simulation experiment of the equilibration of the hard-sphere
liquid [8].

In future work we shall establish a more direct contact
with those simulation results, and with other simulation
or experimental data, but in the meantime, it will also
be interesting to interrogate the NE-SCGLE theory on the
variations of the scenario just described, when the system
and conditions employed here are modified. For example, one
may be interested in understanding how this scenario might
change when the protocol of the quench is modified. Other
questions may refer to the dependence of this scenario on the
particular class of model system and interactions (involving
here only soft repulsions), particularly when attractive forces
are incorporated. The answer to these questions will surely use
the methods and experience developed in the presented work
and will be the subject of future research.

Let us finally mention that one of the most important
contributions of the present work is to pose the question
whether current experiments and simulations of dense par-
ticulate systems are able to equilibrate the system at packing
fractions above 58%. This is an important issue, given the
fact that there are simulation results in the literature which
claim that well-equilibrated repulsive liquids can be obtained
in molecular dynamics simulations at packing fractions near
random close packing (see, e.g., Ref. [46] and references
therein). In order to have additional independent elements to
discuss this issue, in the inset of Fig. 14(b) we have referred
to the simulations of hard spheres performed in Ref. [8], in
which the structural relaxation time τα(t ; φ) was measured as
a function of waiting time and packing fraction.

We must caution, however, that these simulations, like any
other, are limited to a finite time window (in this case they only
include relaxation times up to 105 in units of the molecular
collision time σ

√
M/kBT ). This apparent saturation of the

crossover volume fraction φ(c)(t) to φ(a) ≈ 0.582, shown in
the inset of Fig. 14(b), is thus backed only by the simulation
data in this limited time window. Hence, the possibility
exists that future simulations carried out in much larger
time windows might exhibit deviations from the scenario
proposed by the present theory. This would demonstrate that
this theory misses some crucial ingredient that would allow
the equilibration of the HS system at volume fractions above
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0.582 and would move the divergence of equilibration times
closer to random close packing. Simulations to date, how-
ever, have not definitively answered this important question,
and, hence, extending further the time window will surely
illuminate the discussion around this central issue. In the
meantime, it would also be desirable to relax some of the
obvious limitations of the present theory, such as the absence
of static and dynamic heterogeneities and the underlying
approximation of local stationarity, as we intend to do in the
future.
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and E. Lázaro-Lázaro for helpful discussions. This work was
supported by the Consejo Nacional de Ciencia y Tecnologı́a
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[8] G. Pérez-Angel, L. E. Sánchez-Dı́az, P. E. Ramı́rez-González,
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