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ABSTRACT
The interplay between short-range attractions and long-range repulsions (SALR) characterizes the so-called liquids with competing
interactions, which are known to exhibit a variety of equilibrium and non-equilibrium phases. The theoretical description of the
phenomenology associated with glassy or gel states in these systems has to take into account both the presence of thermodynamic
instabilities (such as those defining the spinodal line and the so called λ line) and the limited capability to describe genuine non-
equilibrium processes from first principles. Here, we report the first application of the non-equilibrium self-consistent generalized
Langevin equation theory to the description of the dynamical arrest processes that occur in SALR systems after being instantaneously
quenched into a state point in the regions of thermodynamic instability. The physical scenario predicted by this theory reveals an
amazing interplay between the thermodynamically driven instabilities, favoring equilibrium macro- and micro-phase separation, and the
kinetic arrest mechanisms, favoring non-equilibrium amorphous solidification of the liquid into an unexpected variety of glass and gel
states.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0132525

I. INTRODUCTION

This work reports the first systematic application of the non-
equilibrium self-consistent generalized Langevin equation theory1–3

to the description of non-equilibrium arrested states in fluids
with competing short-range attractions and long-range repulsions
(SALR).4,5 Such arrested states may prevent the fluid from reaching
the experimentally elusive6 ordered phases expected at thermody-
namic equilibrium conditions in the low-density low-temperature
regime of these systems.7

As a context, let us first recall that van der Waals (vdW)
molecular explanation of the gas–liquid coexistence had in mind a
model fluid of spherical particles interacting by an excluded-volume
repulsion plus a weaker short-ranged attraction.8,9 In choosing this
simple model of a fluid, van der Waals was fortunate enough

since, for example, innocently adding a soft longer-ranged repulsive
interaction immediately leads to a different class of systems, whose
equilibrium phase behavior turns out to be far more complex. This
more general class, characterized by the excluded-volume potential
plus the competing SALR interactions, bears an enormous relevance
in colloidal and soft materials. Familiar physical realizations of SALR
conditions may be represented, for example, by the effective interac-
tion between two charged particles (colloids, proteins, or macroions)
in aqueous solution10,11 or between two colloids in colloid–polymer
mixtures.12

Different approaches have been applied to determine the
equilibrium phase diagram of SALR systems, including theoretical
methods (integral equations,13–16 density functional theory,17–20

and field-theoretical models described by Ginzburg–Landau
Hamiltonians21–23) and Monte Carlo computer simulations.24–28
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As recently and thoroughly reviewed,4,7 the picture that emerges
predicts a rich and diverse phenomenology, which includes the
appearance at low densities of an equilibrium fluid phase of finite-
sized clusters, the coexistence between disordered equilibrium (gas
and liquid) phases and ordered (“modulated”) inhomogeneous
phases, and the possibility that equilibrium microphase separation
preempts the usual vdW gas–liquid coexistence.

These different phenomenological features correspond, in gen-
eral, to different combinations of the short-range attraction and the
long-range repulsion. A major challenge is, of course, to establish
which salient features correspond to which regime in the four-
dimensional parameter space spanned by the intensity and range of
the two competing interactions. After careful analysis of experimen-
tal, simulation, and theoretical results, Liu and Xi4 suggested that
most of SALR systems can be grouped in three different regimes,
identified by the ratio between ranges of the attractive and repul-
sive interactions. They noticed that most model experimental SALR
systems studied belong to a similar type, referred to as type I SALR
systems, whereas many simulation works are type II SALR systems.
As discussed in detail in Ref. 4, the difference between different types
of SALR systems has strong impact on the final equilibrium phase
diagram. As specified below, however, the present work will focus
on still a third SALR regime, referred to in Ref. 4 as type III SALR
systems.

Given this equilibrium scenario, the next most important issue
is its actual experimental observability. This concern arises from the
possible emergence of kinetic barriers to equilibration, which may
lead to conditions of dynamic arrest, as suggested by early theoretical
considerations16,29–31 and by molecular dynamics (MD) studies.32–37

The latter have confirmed, for example, the presence of a phase of
stable, freely diffusing clusters of particles and of non-equilibrium
phases of disordered arrested states. Beyond its fundamental rel-
evance, this knowledge is important for many practical purposes,
such as designing rules for the assembly of porous mesophases.38

In contrast with Montecarlo simulations, molecular dynamics [and
Brownian dynamics (BD)] simulations mimic realistic trajectories
in phase space, whose ensemble averages directly relate with the real
dynamical phenomenology, actually observed since early and careful
experimental studies.39–44

Regarding the theoretical efforts to understand the formation
of amorphous arrested states in SALR systems, let us mention the
analysis aimed at determining if a glass transition exists in field-
theoretical models. These efforts include the use of the replica
approach21–23,45 and of the Langevin-equation version of these
models.46,47 Early applications of mode coupling theory (MCT)48,49

to SALR systems were also reported by Grousson et al.46 and
by Geissler and Reichman,47 although only for field-theoretical
models.

However, developing a general fundamental microscopic the-
ory of dynamical arrest in structural glasses, which explains the glass
transition and extends the van der Waals picture to non-equilibrium
conditions and to more complex interactions (such as SALR sys-
tems), has been the purpose of relevant work over the last half a
century.50 In this context, one should highlight the first-principles
description of the dynamic properties of fluids near conditions of
dynamic arrest provided by MCT,48,49 which predicts the location of
the transition from equilibrium-fluid to dynamically arrested states.
As early as in 2004, Wu et al.31 discussed the application of MCT

to the hard-sphere plus double Yukawa SALR type II interaction,
predicting its fluid-to-glass transition diagram in the high-density
high-temperature regime. Unfortunately, this work did not explore
in detail the opposite (low-density low-temperature) regime.

Starting this exploration is precisely the purpose of the present
work, motivated by the need to understand if the emergence of
kinetic arrest and non-ergodicity might be the source of the experi-
mental elusiveness of the predicted ordered (or “modulated”) equi-
librium phases, which characterizes one specific SALR regime. In
contrast with the work of Wu et al., however, our work will not be
based on MCT but on the more recent theory referred to as the self-
consistent generalized Langevin equation (SCGLE) theory of colloid
dynamics51–55 and dynamical arrest,56–58 which in most aspects is
analogous to MCT.59

In reality, however, the SCGLE theory, just like MCT, bears
a fundamental constraint to equilibrium conditions, thus imped-
ing the description of essential fingerprints of dynamic arrest, such
as the aging of glass- and gel-forming liquids. The route of escape
from this limitation, however, was provided in Ref. 60, which
proposed a far-from-equilibrium extension of the Onsager the-
ory of irreversible processes61,62 and the Onsager–Machlup theory
of thermal fluctuations,63,64 leading to the general theory of irre-
versible processes in liquids, referred to as the non-equilibrium
self-consistent generalized Langevin equation (NE-SCGLE) theory.1
This more general approach contains as a particular case the original
equilibrium SCGLE theory, which is thus enriched by the non-
equilibrium kinetic perspective required to describe non-stationary
processes.65

Therefore, the present study will be based on the NE-SCGLE,
a theory that has solidly demonstrated its ability to predict some
of the most relevant universal signatures of both the glass and gel
transitions, including aging effects, as well as very specific features
reflecting the particular role of the molecular interactions involved
in the explicit systems considered so far. For instance, for systems
involving only excluded volume interactions, this theory accurately
describes the process of formation of high-density hard-sphere-
like glasses,2,3,66,67 whereas for liquids with excluded volume plus
attractive interactions (i.e., those in vdW’s mind), it predicts the for-
mation of sponge-like gels and porous glasses by arrested spinodal
decomposition.68–71 Extended to multi-component systems,67,72 the
NE-SCGLE theory opens the possibility of describing the aging
of “double” and “single” glasses in mixtures of neutral57,73,74 and
charged58,75 particles; the initial steps in this direction are highly
encouraging.74 Similarly, its extension to liquids formed by particles
interacting by non-radially symmetric forces76–78 accurately predicts
the non-equilibrium coupled translational and rotational dynamic
arrest observed in simulations.79

In this work, we start a systematic application of the theoretical
infrastructure of the NE-SCGLE theory to the same model of SALR
colloidal fluid studied by Wu et al.,31 namely, a three-dimensional
fluid of hard spheres (HS) of diameter σ, interacting through a total
pair potential u(r) = uHS

(r) + uDY
(r), where uHS

(r) is the hard-
sphere potential and uDY

(r) is the sum of two competing Yukawa
interactions,

uDY
(r) = −ϵ1

exp[−z1(r/σ − 1)]
r/σ

+ ϵ2
exp[−z2(r/σ − 1)]

r/σ
. (1)
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This model system will be referred to as the “hard-sphere plus dou-
ble Yukawa” (HSDY) fluid, whose equilibrium phase diagram was
outlined by Archer and collaborators17,18 using density functional
theory within a random phase approximation for the free energy, an
approximation also employed in this work.

In its simplest version, the NE-SCGLE theory is summarized
by a set of equations describing the irreversible evolution of the
non-equilibrium structural and dynamical properties of an instan-
taneously quenched glass-forming liquid. These properties include
the non-equilibrium structure factor (NESF) S(k; t) and the col-
lective and self -intermediate scattering functions (NEISF) F(k, τ; t)
and (self-NEISF) FS(k, τ; t), from which the diffusion coefficient,
relaxation times, and rheological properties can be derived. Each
of these properties depend on the final density and temperature
and on the waiting time t, after the quench, as well as on the var-
ious parameters characterizing the system (such as the interaction
parameters ϵ1, ϵ2, z1, and z2). Thus, the analysis of this multidimen-
sional dependence, in its various regimes, will require more than one
detailed report and is completely out of the scope of the present
work. Hence, here we shall only summarize the conceptual and
practical infrastructure needed for such analysis and will illustrate
its use focusing mostly on the structural properties, represented by
the NESF S(k; t) and by the corresponding non-equilibrium radial
distribution function (NERDF) g(r; t).

For clarity, in Sec. II, we summarize the relevant aspects of the
NE-SCGLE theory and briefly explain the procedure for its applica-
tion to this SALR model fluid. This includes introducing the mean
field approximation of the free energy density functional, which
determines the main features of the equilibrium structure and phase
behavior of the system, and is also the fundamental thermodynamic
input of the NE-SCGLE equations. Starting with Sec. III, we restrict
ourselves to the particular regime of long-ranged repulsions (z1 ≥ 1
> z2). This election of parameters will limit this work to exploring
only type III SALR system,4 for which we will discuss what we refer
to as the “glass transition diagram”; this is the NE-SCGLE comple-
ment of the concept of equilibrium phase diagram. In Sec. IV, we
discuss the various density and temperature regimes of the behavior
of the long-t asymptotic limit Sa

(k) of the NESF S(k; t), whereas in
Sec. V, this analysis is extended to the finite waiting-time regime to
illustrate the predicted scenario of the aging of the structural prop-
erties. In Sec. VI, we summarize the main results of the present
paper.

II. THE NE-SCGLE THEORY
The fundamental origin of the NE-SCGLE was laid down in

detail in Refs. 1–3. However, a practical summary can be found in the
supplementary material of Ref. 70, which highlights the main simpli-
fying approximations leading to the version of this theory employed
in this and in all its previous concrete applications. The present
study will be a straightforward extension of the work reported in
Refs. 68–71, which describes the predicted scenario of arrested spin-
odal decomposition in liquids with excluded-volume plus attractive
interactions. The reader is invited to visit these references, which
describe in all detail the conceptual and practical challenges found
in applying the theory to quenches inside the spinodal region or
inside other thermodynamically unstable regions of the state space.
These references also illustrate the wealth of information provided

by the NE-SCGLE on the time-dependent physical properties of an
attractive system under these non-equilibrium conditions. In par-
ticular, the novel concept of time-dependent non-equilibrium phase
diagram that emerges from these applications is carefully explained
in Ref. 71.
A. The NE-SCGLE equations

In its simplest version, the NE-SCGLE theory is summarized
by a set of equations that describe the irreversible evolution of the
non-equilibrium structural and dynamical properties of a model
glass-forming liquid, formed by N identical spherical particles in
a volume V that interact through a radially symmetric pair poten-
tial u(r). It starts with the time evolution equation for the NESF
S(k; t) ≡ δn(k; t) δn(−k; t), where the over-line indicates the aver-
age over a (non-equilibrium) statistical ensemble and where δn(k; t)
is the Fourier transform of the fluctuations in the local particle num-
ber density n(r; t). For a system that is instantaneously quenched
at time t = 0 from initial bulk density and temperature (ni, Ti) to
new final values (n, T), constrained to remain spatially uniform
(n(r; t) = n ≡ N/V), such an equation reads, for t > 0,

∂S(k; t)
∂t

= −2k2D0b(t)nE(k; n, T)[S(k; t) − 1/nE(k; n, T)], (2)

with D0 being the short-time self-diffusion coefficient.80

In this equation, the time-dependent mobility function b(t) is
defined as b(t) ≡ DL(t)/D0, with DL(t) being the long-time self-
diffusion coefficient at evolution time t. This function couples the
structural relaxation described by Eq. (2) with the non-equilibrium
relaxation of the dynamic properties of the fluid. Such coupling is
established by the following exact expression for b(t):

b(t) = [1 + ∫
∞

0
dτΔζ∗(τ; t)]

−1
, (3)

in terms of the t-evolving, τ-dependent friction function Δζ∗(τ; t),
for which the NE-SCGLE theory derives the following approximate
expression:1

Δζ∗(τ; t) =
D0

24π3n ∫
dk k2

[
S(k; t) − 1

S(k; t)
]

2

F(k, τ; t)FS(k, τ; t), (4)

in terms of the NESF S(k; t) and of the NEISF F(k, τ; t)
≡ N−1δn(k, t + τ)δn(−k, t), where δn(k, t) is the FT of the ther-
mal fluctuations δn(r, t) ≡ n(r, t) − n of the local number den-
sity n(r, t) at time t. The self-NEISF FS(k, τ; t) is defined as
FS(k, τ; t) ≡ exp[ik ⋅ ΔrT(t, τ)], with ΔrT(t, τ) ≡ [rT(t + τ) − rT(t)]
being the displacement of one particle considered as a tracer. As
before, the over-line indicates an average over a corresponding
non-equilibrium statistical ensemble.

The previous equations are complemented by the memory-
function equations for F(k, τ; t) and FS(k, τ; t), written approx-
imately, in terms of their Laplace transforms (LT) F(k, z; t) and
FS(k, z; t), as

F(k, z; t) =
S(k; t)

z + k2D0S−1
(k;t)

1+λ(k) Δζ∗(z;t)

(5)
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and

FS(k, z; t) =
1

z + k2D0

1+λ(k) Δζ∗(z;t)

, (6)

where Δζ∗(z; t) is the LT of Δζ∗(τ; t). In these equations
λ(k) ≡ 1/[1 + (k/kc)

2
] is an “interpolating function,”56 with kc

being an empirically determined cutoff wave-vector. In the present
work, we use kc = 1.305(2π)/σ, with σ being the hard-core parti-
cle diameter of our HSDY model fluid, which guarantees that the
hard-sphere liquid will have its dynamic arrest transition at a volume
fraction ϕc = 0.582, in agreement with simulations.66

Equations (2)–(6) constitute the mathematical summary of
the NE-SCGLE theory. Since the function E(k; n, T) is consid-
ered known, they constitute a closed system of equations for the
time-dependent SF S(k; t) and for the non-equilibrium dynamic
properties b(t), Δζ∗(τ; t), F(k, τ; t), and FS(k, τ; t). Thus, Subsec-
tion II B defines the thermodynamic function E(k; n, T), explains its
role in determining stability and structural properties.

B. Thermodynamic stability function E(k; n, T)
The function E(k; n, T) is defined as the FT of E[r; n, T], which,

in turn, is the second functional derivative of the Helmholtz free
energy density-functional F[n, T],

E[∣ r − r′ ∣; n, T] ≡ (
δ2 F[n, T]/kBT

δn(r)δn(r′)
), (7)

evaluated at the uniform (bulk) density and temperature fields
n(r, t) = n ≡ N/V and T(r, t) = T. We refer to E(k; n, T) as the ther-
modynamic stability function, since it provides a criterion for the
thermodynamic stability of the system. For example, the state func-
tion E(k; n, T), evaluated at k = 0, is related with the thermodynamic
derivative (∂p/∂n)T , where p is the pressure, as

β(∂p/∂n)T = nE(k = 0; n, T), (8)

which is the so-called compressibility equation84 (β−1
≡ kBT). As

we see in Sec. II C, this equation of state allows us to determine
the main features of the gas–liquid coexistence region, including the
spinodal line, obtained from the condition E(k = 0; n, T) = 0, which
separates the state space (n, T) in the stable (E(k = 0; n, T) > 0) and
the unstable (E(k = 0; n, T) < 0) equilibrium domains.

More generally, the function E(k; n, T) must be positive for
all wave-vectors for the system to be stable, since if E(k; n, T) < 0
for a finite k, the system would be unstable to density fluctuations
of wavelength 2π/k. Under some conditions, a domain k− ≤ k ≤ k+

may exist in which E(k; n, T) < 0. Then, in analogy with the spin-
odal line, we define a λ line in the state space (n, T) by the threshold
condition k− = k+ = kλ, at which E(kλ; n, T) = 0.

The stability function E(k; n, T) also plays a relevant role in
determining the structural properties of the system. For example, the
equilibrium static structure factor (SF) Seq

(k) is given by

Seq
(k) = 1/nE(k; n, T), (9)

which is just the well-known Ornstein–Zernike (OZ) equation,84

as can be seen by writing Seq
(k) = 1 + nheq

(k) and nE(k; n, T)
= 1 − nc(k), with heq

(k) being the FT of the equilibrium total
correlation function (TCF) heq

(r) and c(k) being the FT of the
direct correlation function (DCF) c(r). Clearly, the SF Seq

(k) of a
uniform system does not exist when E(k; n, T) < 0.

From the kinetic perspective of Eq. (2), the OZ equation in
Eq. (9) is just the equilibrium condition for the NESF S(k; t). This
is, in fact, the obvious stationary solution of the kinetic equation for
S(k; t) in Eq. (2), asymptotically attained at long times in the kinetic
process of equilibration, i.e., S(k; t →∞) = Seq

(k) = 1/nE(k; n, T).
However, under general non-equilibrium conditions, such as during
the transient that follows an instantaneous quench, the NESF S(k; t)
is certainly NOT given by the OZ equation S(k; t) = 1/nE(k; n, T)
but by the solution of Eq. (2), which provides a general manner to
process the information contained in E(k; n, T) to determine S(k; t).
Thus, one can say that Eq. (2) is the non-equilibrium extension
of the OZ equation. Note that as a thermodynamic input of this
kinetic equation, negative values of E(k; n, T) are perfectly physical,
leading, in fact, to some of the most remarkable predictions of the
NE-SCGLE theory.

C. Mean field free energy functional F[n, T]
In practice, we must identify a pertinent strategy to approxi-

mate F[n, T] for our three-dimensional HSDY model fluid. With
the aim of adopting the same level of approximation as in the early
theoretical discussions of the equilibrium phase diagram of SALR
systems, we follow Refs. 13, 17, and 18 in writing F[n, T] as the
sum F[n, T] = F HS

[n, T] + F DY
[n, T] of the exact hard-sphere

free energy F HS
[n, T] plus the contribution F DY

[n, T] of the dou-
ble Yukawa. A simple explicit expression for the latter is provided
by its random phase approximation (RPA), within which F[n, T] is
given by

F[n, T] = F HS
[n, T] +

1
2 ∫

dr∫ dr′n(r)uDY
(∣ r − r′ ∣)n(r′),

(10)
and the function E[∣ r − r′ ∣; n, T] of Eq. (7) is given by

E[∣ r − r′ ∣; n, T] = E HS
[∣ r − r′ ∣; ϕ] + βuDY

(∣ r − r′ ∣), (11)

whose FT reads

E(k; n, T) = E HS
(k; ϕ) + βuDY

(k). (12)

Writing FHS
[n, T] as FHS

[n, T] = F HS
id [n, T] + FHS

ex [n, T],
where FHS

id [n, T] is the ideal-gas value and F HS
ex [n, T] is the “excess”

HS contribution,85 allows us to write Eq. (7) for the pure HS
system as

EHS
[∣ r − r′ ∣; n, T] = δ(r − r′)/n − cHS

(∣ r − r′ ∣; n, T) (13)

with cHS
(∣ r − r′ ∣; n, T), defined by cHS

(∣ r − r′ ∣; n, T)
≡ −β(δ2 F HS

ex [n, T]/δn(r)δn(r′)), being the exact HS DCF. In
Fourier space, this equation reads E HS

(k; ϕ) = 1/n − cHS
(k; ϕ). As
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in Refs. 17 and 18, here we will also approximate cHS
(k; ϕ) by its

Percus–Yevick (PY) approximation86 but complemented with its
Verlet–Weis (VW) correction,87 cHS

(k; ϕ) ≈ cHS
PYVW(k; ϕ). Thus, the

approximate thermodynamic input E(k; n, T) that we shall employ
in this work is finally written as

E(k; n, T) ≈ 1/n − cHS
PYVW(k; ϕ) + βuDY

(k). (14)

D. Equilibrium properties of the HSDY model
We may now use this approximate expression for the thermo-

dynamic input E(k; n, T) of the NE-SCGLE equations, Eqs. (2)–(6),
whose solution will describe the non-equilibrium response of the
liquid after the instantaneous quench. For reference, however, let
us first summarize some purely equilibrium properties that directly
derive from the RPA for the thermodynamic input E(k; n, T) in
Eq. (14), applied to the HSDY potential. For this, let us rewrite the
DY term in Eq. (1) in dimensionless form as

βuDY
(r) = −ϵ

exp[−z1(r/σ − 1)]
r/σ

+ A
exp[−z2(r/σ − 1)]

r/σ
, (15)

with ϵ ≡ ϵ1/kBT and A ≡ ϵ2/kBT.
Following Refs. 17 and 18, we have in mind a colloid–polymer

mixture and consider the (“athermal”) conditions in which the phys-
ical temperature T is kept fixed and the strength of the attraction
is controlled by varying the polymer concentration, i.e., ϵ−1 plays
the role of an effective temperature Teff = ϵ−1, which for simplicity
in notation will be denoted as T. Thus, if the particle charge and
ionic strength can be assumed fixed, we can treat the parameters
A and z2 (the intensity and range of the electrostatic repulsion)
as fixed parameters. As a result, the function E(k; n, T) will actu-
ally depend on the dimensionless concentration n∗ ≡ nσ3, which we
shall continue denoting by n (or in terms of the packing fraction
ϕ = πn/6), and on the effective temperature T. This dependence
is additional to the dependence of E(k; ϕ, T) on the potential
parameters A, z1, and z2.

E. Equilibrium structure of the HSDY model
The first relevant property to discuss is, of course, the SF

Seq
(k; n, T) given by Eq. (9), which for notational convenience

we will denote as S(k; n, T). From now on, we will consider a
HSDY fluid with fixed parameters z1 = 1, z2 = 0.5, and A = 0.5,
which, according to Ref. 4, corresponds to a type III SALR system.
Figure 1(a) exhibits the main distinctive feature of the SF, previously
discussed by Sear and Gelbart13 and by Archer et al.17 for the same
HSDY model within the RPA. We refer to the development of a large
peak centered at a small but finite wave vector k = kλ (referred to as
the “cluster” peak17). This peak is associated with the propensity to
the spontaneous formation of clusters in the equilibrium fluid, with
its height S(kλ; ϕ, T) increasing and its position kλ decreasing, as
the temperature T is reduced along a given isochore (ϕ = 0.15, in the
present case).

According to the RPA results in Fig. 1(a), S(kλ; ϕ, T) actually
diverges as the temperature T reaches a singular value Tλ(ϕ) from
above. The curve T = Tλ(ϕ), defined by the condition E(kλ; ϕ, T)
= 1/S(kλ; ϕ, T) = 0, is referred to as the λ line [for the isochore
of the figure, Tλ(ϕ = 0.15) = 0.6733]. Taking the inverse FT of
[S(k) − 1]/n yields the total correlation function h(r), and in
Fig. 1(b), we plot the same information of Fig. 1(a) but in terms of
the radial distribution function g(r) = 1 + h(r). The results in this
figure exhibit a notorious structural feature as T approaches Tλ(ϕ)
from above, namely, the emergence of a long-range minimum in
g(r; ϕ, T) at r = rmin (≈6σ in the RDF corresponding to the deepest
quench, T = 0.68, in the figure). As we shall see later, this structural
feature is an essential fingerprint of the process of cluster forma-
tion and eventual dynamic arrest due to cluster–cluster repulsions.
Finally, note that Figs. 1(a) and 1(b) report the same information as
Figs. 1 and 2 of Ref. 17 although at a different value of the parameter
A (0.5 here and 0.082 in Ref. 17).

At this point, it is pertinent to clarify that the appearance of
a low-k peak in the SF is a characteristic hallmark of many SALR
systems (whether type I, II, and III), and it is generally associated
with the emergence of additional ordering at a length scale much
larger than the particle diameter σ. As discussed in Ref. 5, particu-
larly referring to lysozyme protein solutions, this low-k peak is not
necessarily related to the formation of clusters with optimal sizes
and, hence, should more appropriately be referred to as an inter-
mediate range order (IRO) peak.5 Notwithstanding this clarification,
we can say, following the discussion of Refs. 17 and 27, that in our
present type III SALR model system, it is safe to refer to S(kλ; ϕ, T)
as a “cluster” peak.

FIG. 1. Behavior of (a) the SF S(k; n, T) = 1/nE(k; n, T) and (b) the corresponding RDF g(r ; ϕ, T), as provided by the RPA [Eq. (14)] for the HSDY fluid, with parameters
z1 = 1, z2 = 0.5, and A = 0.5, for fixed volume fraction ϕ = 0.15 and final temperatures above the λ line, T > Tλ(ϕ) = 0.6733, as indicated. (c) Equilibrium gas–liquid
phase diagram of the same HSDY fluid, exhibiting the spinodal (dashed line) and the λ (solid line) curves.
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F. Equilibrium phase diagram of the HSDY model
The λ line Tλ(ϕ) of the system described in Figs. 1(a) and 1(b) is

represented in Fig. 1(c). For reference, the spinodal line is also plot-
ted and it was calculated from the approximate function E(k; n, T)
in Eq. (14). This figure, which is our version of Fig. 6 of Ref. 17,
summarizes the equilibrium phase diagram of the HSDY model pre-
dicted by the RPA, which indicates that the gas–liquid transition is
preempted by the occurrence of the singular λ line, below which
uniform disordered equilibrium states do not exist, since S(k; ϕ, T)
= 1/nE(k; ϕ, T) is negative (and hence, non-physical) for wave-
vectors in an interval around kλ.

With the aim of understanding this puzzling feature of the
equilibrium phase behavior of the type III HSDY model, Archer
and Wilding27 carried out Monte Carlo simulations, showing that,
under some circumstances, the repulsive part of the pair potential
could lead to the replacement of the liquid–vapor coexistence by
two first-order phase transitions. The first involves the coexistence
of the vapor with a fluid of spherical liquid-like clusters, and the
second involves the coexistence of a phase of spherical voids with
the homogeneous liquid. These two transition lines meet with the
vapor–liquid transition at a triple point. Later on, using density-
functional theory, Archer et al.18 concluded that below the λ line,
the equilibrium states consisted of non-uniform spatially ordered (or
“modulated”) phases (see Fig. 5 of Ref. 18), thus theoretically sup-
porting, in part, the equilibrium scenario advanced by Monte Carlo
calculations.

III. GLASS TRANSITION DIAGRAMS
Unfortunately, careful experimental work in colloidal systems

with competing interactions does not report the observation of
these equilibrium ordered structures.39–44 Instead, as also suggested
by extensive molecular dynamics simulations,33–35 what seems to
surround or substitute the predicted spatially ordered phases are
equilibrium fluids of finite-sized clusters and percolating gel-like
states. So far, the experimental elusiveness in observing the afore-
mentioned modulated phases in SALR systems remains unresolved.
One possible reason, of course, is the fact such phases are theoreti-
cally predicted for type III SALR liquids while—according to
Ref. 4—most model experimental SALR systems studied are of type
I. A second possibility, however, is related to the fact that the cluster
fluid and percolated gel-like states are able to evolve into gen-
uinely arrested non-equilibrium states, whose nature is controlled
by the interplay between repulsions and attractions and whose fun-
damental understanding poses even more complex technical and
fundamental challenges.

The theoretical description of such dynamically arrested states,
in fact, is typically out of the scope of conventional equilibrium
theories and simulations and, hence, must be described from a gen-
uinely non-equilibrium perspective, such as that provided by the
solution of the NE-SCGLE Eqs. (2)–(6). In analyzing the solution
of this set of equations, it is instructive to start by discussing their
asymptotic long-time stationary limits. For this, we can consider two
strategies: either we first take the stationary limit of Eqs. (2)–(6)
and then analyze its solutions or else we first formally determine
the full time-dependent solution of Eqs. (2)–(6) and then take the
long-time stationary limit. Let us describe the results of these two
strategies.

A. MCT-like “glass transition” diagram
The first strategy only considers stationary solutions that cor-

respond to thermodynamic equilibrium states and only requires
the knowledge of the thermodynamic function E(k; n, T). Its main
result is the MCT-like “glass transition” diagram of the system,71,88

which determines the borderline of the region of the state space
where no kinetic barriers will impede the system from reaching
thermodynamic equilibrium.

To explain the concept of glass transition diagram (GTD),
let us note that Eqs. (2)–(6) contain the description of the
dynamic properties of equilibrium fluids as the particular limit
in which the solution S(k; t) of Eq. (2) has reached its equilib-
rium limit S(k; t →∞) = S(k; n, T) = 1/nE(k; n, T). In this limit,
one recovers the original equilibrium SCGLE theory of dynami-
cal arrest56–58 that describes the dynamics of equilibrium fluids.
The corresponding SCGLE equations follow from replacing S(k; t),
Δζ∗(τ; t), F(k, τ; t), and FS(k, τ; t) in Eqs. (4)–(6) by, respec-
tively, S(k), Δζ∗eq

(τ) ≡ Δζ∗(τ; t →∞), Feq
(k, τ) ≡ F(k; τ; t →∞),

and Feq
S (k, τ) ≡ FS(k; τ; t →∞). As in MCT, the SCGLE theory pro-

vides equations for the so-called non-ergodicity parameters, which
are the long-τ asymptotic limits f eq

(k) ≡ Feq
(k, τ →∞) and f eq

S (k)
≡ Feq

S (k, τ →∞).
In the case of the SCGLE theory, f eq

(k) and f eq
S (k) can be writ-

ten in terms of the SF, S(k; n, T), and the squared localization length
γeq
(ϕ, T) [Eqs. (9) and (10) of Ref. 53], the latter being solution of the

equation

1
γeq
(ϕ, T)

=
1

6π2n∫
∞

0
dkk4
[S(k; n, T) − 1]2λ2

(k)

×
1

[λ(k)S(k; n, T) + k2γeq
(ϕ, T)][λ(k) + k2γeq

(ϕ, T)]
.

(16)

The dynamic order parameter γeq
(ϕ, T) diverges at equilibrium

and has a finite value at non-ergodic states. Thus, it partitions the
state space (ϕ, T) into its ergodic and non-ergodic regions, with
the ideal glass transition line being the borderline between them.
The monotonically increasing (red) solid line of Fig. 2(a) is such
fluid–glass transition line T = Tc(ϕ) for our HSDY model, obtained
within the RPA for S(k; n, T) in Eqs. (9) and (14). This liquid–glass
transition line originates at high-temperatures and high-densities at
the well-known hard-sphere glass transition, occurring at ϕc ≈ 0.58.
At lower T and ϕ, it meets the λ line at the state point (ϕb, Tb)

= (0.365, 0.452).
Upon crossing this transition line from the ergodic domain

[region I of Fig. 2(a)] to the non-ergodic domain (region II),
the order parameter γeq

(ϕ, T) changes discontinuously from its
equilibrium infinite value to a finite non-equilibrium value, and
this discontinuous behavior characterizes what is referred to
(borrowing MCT language) as a “type B” glass transition. An
alternative dynamic order parameter is the normalized equilib-
rium long-time self-diffusion coefficient DL(ϕ, T)/D0 = beq

(ϕ, T)
= b(t →∞; ϕ, T), also provided by the solution of the SCGLE equa-
tions. This dynamic state function is finite and positive in region I
and vanishes in region II and along the ideal fluid–glass transition
line T = Tc(ϕ). Its value is represented in Fig. 2(a) by a color code,
with the darkest color corresponding to the arrested region II.
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FIG. 2. (a) Glass transition diagram of the HSDY fluid with z1 = 1, z2 = 0.5, and A = 0.5, provided by the equilibrium SCGLE theory using Eq. (16). The blue solid line is
the λ line and the red solid one is the fluid–glass transition line, with both meeting at the (“bifurcation”) point (ϕb, Tb) = (0.365, 0.452) (open circle). Region I identifies the
ergodic region and region II identifies the glass region. The predicted equilibrium mobility at each state points (ϕ, T) is represented by a color code (colored region) above
the λ line, with the black color representing the limiting condition beq

(ϕ, T) = 0. In the light empty region below the λ line, Eq. (16) cannot be used since S(k; ϕ, T) is
non-physical. (b) Non-equilibrium glass transition diagram provided by the NE-SCGLE theory using Eq. (17). Above the λ line, it coincides with the glass transition diagram
in (a) but adds the information that the λ line itself is a “type B” ergodic-to-non-ergodic transition line and that the fluid–glass transition line continues from above to below
the λ line as a “type B” non-ergodic to non-ergodic transition line.

Clearly, since S(k; n, T) does not exist below the λ line [non-
monotonic (blue) solid line in Fig. 2(a)], the SCGLE theory cannot
provide any predictions there. Thus, this method can identify the
ergodic and non-ergodic regions only above the λ line, leaving the
(light) region below, empty of information. This limitation is, of
course, shared by MCT. In fact, our glass transition diagram in
Fig. 2(a) is the analog of the MCT “kinetic phase diagrams” reported
in Fig. 2 of Ref. 31 for different values of A, z1, and z2.

B. Non-equilibrium “glass transition” diagram
(NEGTD)

The second strategy provides a route of escape from the limi-
tation of the SCGLE theory to equilibrium conditions. For this, we
must return to the full set of Eqs. (2)–(6) that summarize the more
general NE-SCGLE formalism. Following the approach explained in
detail in Ref. 68, one can extend the method based on the solution
of Eq. (16) for γeq

(ϕ, T) by introducing the more general parameter
γ∗(u), defined in Ref. 68 as the solution of its Eq. (3.6), namely,

1
γ∗(u)

=
1

6π2n∫
∞

0
dkk4
[S∗(k; u) − 1]2λ2

(k; u)

×
1

[λ(k; u)S∗(k; u) + k2γ∗(u)][λ(k; u) + k2γ∗(u)]
, (17)

where S∗(k; u) is given by

S∗(k; u) ≡ [nE (k; ϕ, T)]−1

+ {Si(k) − [nE (k; ϕ, T)]−1
}e−2k2D0nE(k;ϕ,T)u, (18)

with Si(k) = S∗(k; u = 0) being an (arbitrary) initial condition.
For a given state point (ϕ, T), we use E(k; ϕ, T) to solve Eq. (17),

which determines γ∗(u) as a function of u. If we find that a finite
value ua of the parameter u exists, such that γ∗(u) is infinite in the

finite interval 0 ≤ u < ua and finite for ua ≤ u ≤∞, then we con-
clude that the system will become kinetically arrested. If, instead,
γ∗(u) =∞ for 0 ≤ u ≤∞, we conclude that the state point (ϕ, T)
lies in the ergodic region of state space. Thus, the functions ua(ϕ, T)
and γa(ϕ, T) ≡ γ∗(ua(ϕ, T)) are dynamic order parameters, which
allows us to draw what we refer to as the non-equilibrium glass
transition diagram (NEGTD). In Fig. 2(b), we present the results
corresponding to our specific HSDY model. Note that, contrary to
the algorithm based on Eq. (16), whose input is the SF S(k; n, T)
(non-physical below the λ line), the input of this non-equilibrium
algorithm is the thermodynamic stability function E(k; ϕ, T), whose
negative values simply indicate conditions of thermodynamic insta-
bility. As a result, this more general criterion to determine dynamic
arrest is far more powerful than that based on Eq. (16), since it is
also applicable to quenches to thermodynamically unstable regions
of state space, as illustrated by the results in Fig. 2(b).

The NEGTD of Fig. 2(b) completely agrees with the GTD of
Fig. 2(a), in that both algorithms partition the portion of the plane
(ϕ, T) above the λ line into the two well-defined regions: region
I of ergodic fluid states and region II of non-ergodic glass states.
However, in the complementary portion of state space, i.e., at and
below the λ line, the NE-SCGLE theory reveals a remarkable non-
equilibrium scenario, whose first unexpected feature is the existence
of two new dynamic arrest transitions for volume fractions below
that of the meeting point (ϕb, Tb). The first of them occurs at a
dynamic arrest temperature that virtually coincides with the λ tem-
perature Tλ(ϕ) and constitutes the boundary between the (ergodic)
region I and a new region (region III) of dynamically arrested states,
whose nature is expected to be revealed by their non-equilibrium
structural and dynamical properties, provided by the full solution of
the NE-SCGLE equations.

The second is a dynamic arrest transition occurring along
the temperature T = Tc(ϕ) (< Tλ(ϕ)), which defines the bound-
ary between the arrested states in region III and the glass states
in the low-temperature–low-density extension of region II. These
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two arrest lines merge at the meeting point (ϕb, Tb), which is now
revealed to actually be a point of bifurcation of the fluid-to-glass
transition line of Fig. 2(a). The latter clearly appears to continue
below the λ line (i.e., for ϕ ≤ ϕb) as the arrested-glass transition line
T = Tc(ϕ).

C. NE-SCGLE dynamic order parameter γ∗a(ϕ, T)
Most of the previous conclusions directly derive from the

density and temperature dependence of the dynamic order para-
meters ua(ϕ, T) and γa(ϕ, T), which, in turn, depend on (ϕ, T)
through the function E(k; ϕ, T) in Eq. (18). The parameter γa(ϕ, T)
bears a more transparent physical significance, better explained
by its original equilibrium definition: it is the long-time asymp-
totic value γeq

≡ limτ→∞Weq
(τ) of the mean squared displacement

(MSD) Weq
(τ) ≡ ⟨(Δr(τ))2

/3⟩eq of individual particles. This para-
meter is infinite if the particles diffuse and is finite if they are
immobilized, in which case it defines the square localization length.
This definition extends to non-equilibrium conditions by explicitly
including the waiting time t in the definition of the MSD, which
is now defined as W(τ; t) ≡ ⟨(r(t + τ) − r(t))2

/3⟩, thus allowing
us to define the non-equilibrium square localization length γa as
γa ≡ limτ→∞ limt→∞W(τ; t).

The use of the function γa(ϕ, T) is better illustrated in
Fig. 3, which plots the inverse of γa(ϕ, T) as a function of the
final temperature T along two isochores, ϕ = 0.15 [Fig. 3(a)] and
ϕ = 0.45 [Fig. 3(b)]. In Fig. 3(a), the (red) dashed horizontal line on
the right (γ−1

a (ϕ, T) = 10−2
) indicates, in reality, that the function

γa(ϕ = 0.15, T) actually remains infinite for all final temperatures
above a critical temperature of about 0.673 [which, within the
resolution of the figure, coincides with the temperature of the λ
line for that isochore, Tλ(ϕ = 0.15) = 0.6733]. At this singular tem-
perature, γa(ϕ, T) jumps discontinuously to a finite value γa(T−λ )
≈ 40 (localization length√γa ≈ 6.3), remaining finite for T < Tλ(ϕ).
This implies that the λ line, besides being the threshold of the
thermodynamic stability of uniform equilibrium states (leading to
the conjectured equilibrium modulated phases below the λ line),

also seems to be an ergodic to non-ergodic transition line. In fact,
since γa(ϕ, T) jumps discontinuously at T = Tλ(ϕ), it is a “type B”
singularity (in MCT terminology).

Examining now temperatures below the λ line, we see that
the parameter γa(T) decreases continuously and exhibits a second
discontinuity at a lower temperature Tc(ϕ = 0.15) = 0.165. This dis-
continuity implies the existence of still a second dynamic arrest
transition, now corresponding to a non-ergodic-to-non-ergodic (or
“glass–glass”) “type B” transition, in which the dynamic order para-
meter γa(T) changes discontinuously by about one order of magni-
tude, from a value γa(T+c ) ≈ 4 to another finite value γa(T−c ) ≈ 0.025
(localization length √γa ≈ 0.15, typical of hard-sphere glasses).
Besides these two discontinuities, we could not identify any other
dynamically singular temperature. In fact, we found that the func-
tion γa(ϕ, T) is perfectly continuous through the spinodal curve
T = Ts(ϕ), implying that this line of thermodynamic instability
would be dynamically irrelevant if dynamical arrest were the only
kinetic pathway available to the system.

Performing these calculations at other isochores allows us to
determine the two glass transition lines [T = Tλ(ϕ) and T = Tc(ϕ)]
shown in Fig. 2(b), which merge at the bifurcation point (ϕb, Tb)

into a single fluid–glass transition line and which coincides with
that determined by the method of Subsection III A [see Fig. 2(a)].
For completeness, Fig. 3(b) illustrates the behavior of the function
γa(ϕ = 0.45, T), corresponding to an isochore at the right of the
bifurcation (ϕb, Tb). In this case, one finds that γa(ϕ = 0.45, T)
is infinite for temperatures above the fluid–glass transition line
T = Tc(ϕ = 0.45) = 0.656 and jumps discontinuously to a finite
value γa(ϕ = 0.45, T−c ) ≈ 0.025. To the right of the bifurcation
(ϕ > ϕb), the function γa(ϕ, T) is continuous through both the λ line
and the spinodal curve, implying that neither of these lines have any
dynamical relevance in this regime (ϕ > ϕb).

Let us emphasize that the dynamic arrest scenario summarized
by Fig. 2(b) appears at first sight to be essentially identical to that
of the same model system in the absence of the repulsive Yukawa
interaction (i.e., with A = 0; see Refs. 68–71). This is illustrated by
comparing Fig. 2(b) with Fig. 4 of Ref. 68. There are, however,

FIG. 3. Dependence of the non-equilibrium dynamic order parameter γa(ϕ, T) on the final temperature T for a sequence of quenches of the HSDY fluid (z1 = 1, z2 = 0.5,
and A = 0.5) at fixed volume fraction ϕ and with initial condition Si(k) = Seq

HS(k; ϕ) for (a) ϕ = 0.15 to the left of the bifurcation point (ϕb, Tb) = (0.365, 0.452) (see the
vertical dashed line in the inset) and (b) ϕ = 0.45 to the right of the bifurcation point. In (a), the vertical dotted lines indicate the three temperatures corresponding to the
λ and spinodal lines and the glass-to-glass transition, thus highlighting the discontinuous jumps of γa at the two temperatures Tλ and Tc and also the fact that Ts passes
completely unnoticed for the non-ergodicity parameter. In (b), the vertical lines emphasize that γa only jumps discontinuously at Tc and crosses the two lines of thermodynamic
instabilities without noticing them.
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remarkable fundamental differences. The most important of them
is the nature of the dynamic arrest transition line T = Tλ(ϕ), along
with the functions ua(ϕ, T) and γa(ϕ, T), which jump from infinite
values above the λ line to finite values below (type B transition). In
the absence of the repulsive term, A = 0, there is no λ line, and the
type B arrest line T = Tλ(ϕ) is replaced by an arrest line T = Ts(ϕ)
lying along the spinodal curve. This transition happens to be of type
A, i.e., the function γa(ϕ, T) passes continuously from infinite values
above the line T = Ts(ϕ) to finite values below.

This qualitative difference between these two cases is, of course,
associated with a remarkable structural difference between the
arrested phases predicted immediately below each transition. Thus,
in the absence of repulsions (A = 0), the NE-SCGLE theory pre-
dicts the formation, below T = Ts(ϕ), of spinodal-decomposition
heterogeneities, whose growth is halted only by dynamic arrest
mechanisms, as established and discussed in detail in Refs. 68
and 69. In contrast, in the presence of repulsions (A > 0), below
T = Tλ(ϕ), the NE-SCGLE theory predicts the dynamic arrest due
to the repulsion between finite-size clusters, as we now establish
by analyzing the structural properties predicted by the NE-SCGLE
theory.

IV. STATIONARY STRUCTURE FACTOR S a (k )
Let us now discuss the structural properties of the HSDY model

predicted by the NE-SCGLE theory, as described by the solution
of Eq. (2) for S(k; t). As carefully discussed in Ref. 68, the time-
dependent NESF S(k; t) is given by S(k; t) = S∗(u(t)), where the
function S∗(u) is defined in Eq. (18) and with the variable u(t)
being the “material” time u(t) ≡ ∫

t
0 b(t′)dt′.65 Before discussing the

structural aging described by the full t-dependence of S(k; t), how-
ever, it is useful to consider its stationary, long-time asymptotic limit
Sa
(k) ≡ lim

t→∞
S(k; t), given by68

Sa
(k; ϕ, T) ≡ [nE (k; ϕ, T)]−1

+ {Si(k) − [nE (k; ϕ, T)]−1
}

× e−2k2D0nE(k;ϕ,T)ua(ϕ,T), (19)

with the initial condition Si(k) chosen here as the SF at infinite T,
i.e., Si(k) = S(k; ϕ, T =∞) = SHS

(ϕ).
Clearly, when the system is quenched to a state point (ϕ, T)

in the ergodic region [infinite ua(ϕ, T) and γa(ϕ, T)], the system
will equilibrate, and S(k; t)will asymptotically attain its equilibrium
value Sa

(k; ϕ, T) = S(k; ϕ, T). The salient features of S(k; ϕ, T) have
been discussed thoroughly in the literature13,16,17 and were briefly
illustrated in Fig. 1. The case of interest that the NE-SCGLE theory
now allows us to discuss is, of course, when the state point (ϕ, T)
lies in one of the non-ergodic regions [finite ua(ϕ, T) and γa(ϕ, T)],
in which the system will no longer be able to equilibrate. Instead,
S(k; t) is expected to attain the non-equilibrium value Sa

(k; ϕ, T)
given by Eq. (19).

Figures 4 and 5 illustrate the dependence on the depth of
the quench of both the NESF Sa

(k; ϕ, T) and the corresponding
NERDF ga

(r; ϕ, T) ≡ 1 + ha
(r; ϕ, T), with the NETCF ha

(r; ϕ, T)
being the inverse FT of [Sa

(k; ϕ, T) − 1]/n. To discuss the high-
density–high-temperature scenario, Figs. 4(a) and 4(b) exhibit the
behavior predicted for these structural properties along the isochore
ϕ = 0.45, which lies well to the right of the bifurcation point (ϕb, Tb),
as a function of T. In Fig. 4(a), we notice first the non-monotonic T-
dependence of the hard-sphere-like correlations, represented by the
height Sa

main(ϕ, T) ≡ Sa
(kmain; ϕ, T) of the main peak of Sa

(k; ϕ, T),
located at k = kmain ≈ 2π/σ. As summarized in the inset of this figure,
this property (described there by the solid line) first increases when
T is decreased still in the ergodic regime, T > Tc(ϕ), but as T crosses
the liquid–glass line, it decreases with smaller T. Note that the SF
S(k; ϕ, T) still exists for T ≤ Tc(ϕ) and the height S(kmain; ϕ, T)
of its main peak continues to increase as T decreases below Tc(ϕ)
(dashed line). The NE-SCGLE theory, however, predicts that below
Tc(ϕ), this equilibrium S(k; ϕ, T) will be unreachable, in practice,
due to kinetic considerations.3

Let us note also the qualitative resemblance of the non-
equilibrium structure represented by Sa

(k; ϕ, T) with the equilib-
rium structure of a fluid of particles with only excluded volume
interactions. This is also observed in the dependence of the NERDF
ga
(r; ϕ, T) illustrated in Fig. 4(b). To quantify this resemblance,

FIG. 4. Behavior of the stationary (a) NESF Sa
(k; ϕ, T) and (b) NERDF ga

(r ; ϕ, T) of the HSDY fluid (z1 = 1, z2 = 0.5 and A = 0.5), at fixed volume fraction ϕ = 0.45 and
for different (final) temperatures T above and below the liquid–glass transition Tc(ϕ = 0.45) = 0.656, as indicated. The inset of (a) exhibits the T dependence of the height
Sa

main(ϕ, T) ≡ Sa
(kmain; ϕ, T) of the main peak of Sa

(k; ϕ, T) (darkest solid line) and of the equilibrium structure factor S(k; ϕ, T) (dashed line). The solid line in the inset
of (b) represents the effective hard-sphere volume fractions ϕHS(ϕ = 0.45, T), determined as described in the text.
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let us borrow the notion of structural equivalence between equi-
librium soft and hard-sphere fluids proposed in Refs. 89–91, and
let us apply it to establish the structural equivalence between our
non-equilibrium HSDY system and the equilibrium HS liquid. For
this, we define an effective HS fluid whose RDF gHS(r; ϕHS)matches
ga
(r; ϕ, T) at least in the height ga

2(ϕ, T) ≡ ga
(r2; ϕ, T) of its second

maximum, located at r2 ≈ 2σ.
This procedure assigns an effective HS volume fraction ϕHS to

each state point (ϕ, T). In the inset of Fig. 4(b), we plot the func-
tion ϕHS = ϕHS(ϕ, T) for ϕ = 0.45, which reveals that in the ergodic
region, ϕHS(ϕ, T) increases with the depth of the quench until reach-
ing a maximum similar in magnitude to the well-known hard-sphere
glass transition volume fraction ϕHS

c = 0.58 at T ≈ Tc. Below the
liquid–glass transition line T = Tc(ϕ), however, we observe that
ϕHS(ϕ, T) remains relatively constant, reminding the T-dependence
of the inverse square localization length γ∗−1

a (ϕ, T) below Tc [see
Fig. 3(b)]. These results provide non-equilibrium evidences to con-
clude that when the fluid–glass transition is crossed along isochores
in the high-density–high-temperature regime, to the right of the
bifurcation point (ϕb, Tb) and far from the λ line, dynamical arrest
is mainly driven by the excluded volume interactions and caging
mechanisms. As a side observation, let us recall that the definition
of the function ϕHS = ϕHS(ϕ, T) was based on the mapping of the
non-equilibrium structure of the HSDY system onto the purely HS
equilibrium structure. Such mapping is characteristic of the so-
called “HS dynamic universality class.”90,91 This leaves open the
provocative possibility that within adequate scalings, the asymptotic
dynamics in this regime could also be mapped onto the equilibrium
dynamics of the HS system.

We now move to the complementary (low-density–low-
temperature) regime and consider the same isochore as in Fig. 1,
ϕ = 0.15, which lies well to the left of the bifurcation point. Going
back to that figure, we recall that along this low-density isochore,
the salient feature, amply discussed in the literature,7,13,16,17 was
the emergence of the low-k (“cluster”) peak of the SF S(k; ϕ, T),
centered at the wave vector denoted as kλ. There, we learned that
the height S(kλ; ϕ, T) of this low-k peak increases monotonically

as the temperature is decreased until reaching the λ line, where it
diverges. Figure 5(a) now complements this equilibrium story with
its non-equilibrium continuation below the λ line, where the SF
S(k; ϕ, T) ceases to exist, but the second, NESF Sa

(k; ϕ, T) given
by Eq. (19), emerges. This new non-equilibrium stationary solu-
tion represents, of course, the formation of amorphous dynamically
arrested materials.

Figure 5(a) illustrates how Sa
(k; ϕ, T) changes as the final tem-

perature is lowered, now below Tλ(ϕ). The main trend observed
is highlighted in the inset and refers to the notorious decrease
with the quench depth of the height Sa

λ(ϕ, T) ≡ Sa
(kλ; ϕ, T) of

the low-k peak of Sa
(k; ϕ, T), starting from its maximum value

attained at T ≈ Tλ [e.g., Sa
λ(ϕ = 0.15, T = 0.67) ≈ 500] down to a

value of ≈45 for T approaching the glass–glass transition Tc = 0.165
from above. Decreasing T below Tc, we observe that the height
Sa

λ(ϕ = 0.15, T) of the small-k peak drops precipitously, down to val-
ues smaller than the height of the main (“particle–particle”) peak
at k ≈ 2π/σ. While this happens to the height Sa

λ(ϕ, T), we also
observe a shift of the position kλ of this peak, to larger wave-vectors,
as T decreases below Tλ. This indicates that the size ξ = 2π/kλ
of the corresponding spatial heterogeneities are largest at T ≈ Tλ
(e.g., ξ ≈ 11σ at T = 0.67, slightly below Tλ) and decreases with the
depth of the quench, down to approximately 6σ at T = 0.17 (slightly
above Tc).

The same information is presented in Fig. 5(b) but in terms
of the stationary NERDF ga

(r; ϕ, T). There, we see that the
long-range minimum in the RDF g(r; ϕ, T) located at a distance
rmin ≈ 7σ, recalling the lower temperature in Fig. 1(b) (T = 0.68
> Tλ), now continues to appear in the NERDF ga

(r; ϕ, T) for
quenches below Tλ. This is illustrated by the shallowest quench of
Fig. 5(b), with final temperature T = 0.67, whose NERDF ga

(r; ϕ, T)
shows a much more pronounced long-range minimum at
rmin ≈ 7σ and a high long-range second maximum ga

2(ϕ, T)
≡ ga
(rλ; ϕ, T) at rλ ≈ 12σ. These long-ranged minimum and maxi-

mum describe the cluster layering around a central particle (itself in
a cluster). One notices, in addition, that the relevance of these fea-
tures, measured by the heights Sa

(kλ; ϕ, T) or ga
2(rλ; ϕ, T), is largest

FIG. 5. Behavior of the stationary (a) NESF Sa
(k; ϕ, T) and (b) NERDF ga

(r ; ϕ, T) of the HSDY fluid (z1 = 1, z2 = 0.5, and A = 0.5), at fixed volume fraction ϕ = 0.15
and for different temperature quenches below Tλ(ϕ = 0.15) = 0.6733. The insets are auxiliary zooms to emphasize both the amplification of structural correlations around
kλ (or rλ, according to the case) and the shift of kλ (rλ) toward smaller (larger) values with decreasing T . In both figures, one notices two qualitatively different behaviors: for
shallow quenches, strong amplifications at low wave vector kλ (or rλ) and for deeper quenches, only a moderate amplification at k ≈ 2π/σ.
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FIG. 6. (a) T-dependence of the height Sa
λ(ϕ, T) ≡ Sa

(k = kλ; ϕ, T) of the NESF Sa
(k : ϕ, T) along the isochore ϕ = 0.15, covering temperatures from below the glass

transition point Tc up to temperatures above the fluid–glass-transition temperature Ta = 0.67336 > Tλ = 0.67331 (see the text). The inset considers an amplification around
Ta used to emphasize the deviations of Sa

λ(ϕ, T) (solid line) from the equilibrium value S(kλ; ϕ; T) (dashed line), which diverges at Tλ. (b) Comparison of the behavior of
the asymptotic value of the NERDF ga

(r ; ϕ = 0.15, T = 0.67) (red solid line) and the effective hard-sphere RDF g(r ; ϕHS) (black solid line) used to match the height of
the second maximum (see the text). (c) T-dependence of the volume fraction ϕeff of the effective hard-sphere fluid used to match the RDF for temperatures below the Ta

transition line and slightly above the Tc transition (see the text).

in the neighborhood of the λ line and decreases with the quench
depth.

To have a more comprehensive summary of these trends in
the behavior of Sa

(k; ϕ, T), in Fig. 6(a), we plot Sa
λ(ϕ = 0.15, T) as

a function of T, covering temperatures from below the glass–glass
transition temperature Tc up to temperatures above Tλ. There, we
see that it is mostly in the temperature interval Tc < T < Tλ where
Sa

λ(ϕ, T) attains very large values, decreasing catastrophically out-
side this interval. Regarding the decay of Sa

λ(ϕ, T) with T in the
close neighborhood of Tλ, if the dynamic arrest transition occurred
exactly at Tλ, we should have a mathematical discontinuity right at
Tλ, since Sa

λ(ϕ, T) remains finite as T approaches Tλ from below but
diverges when T approaches Tλ from above.

A close inspection of such a singular prediction, however,
revealed a rather unexpected scenario, illustrated in the inset of
Fig. 6(a): as it turns out, the dynamic arrest transition does not
occur at T = Tλ but at a different, slightly larger temperature, which
we denote Ta. More precisely, Tλ = 0.673 31, whereas Ta = 0.673 36
(clearly, to detect this difference we needed a very high numer-
ical resolution). However, the consequence is that the dynamic
arrest transition preempts the occurrence of the divergence of
Sa

λ(ϕ, T), thus explaining the practical impossibility of its observa-
tion. Hence, although quantitatively modest, this observation may
have far-reaching fundamental implications regarding the theoreti-
cal understanding of the accurate descriptions of cluster formation
and dynamic arrest in SALR systems. In fact, although scanning the
state space spanned by the potential parameters (z1, z2, and A) is
out of the scope of the present work, let us mention that prelimi-
nary extensions of the present NE-SCGLE calculations reveal that
the minute difference between Tλ and Ta becomes more signifi-
cant when the range of the attraction decreases. We thus expect
that a more detailed study in this direction will allow a more
direct contact with the phenomenology of cluster formation revealed
by simulations,33,36 performed for much narrower attractive wells
than that discussed here. In this paper, however, we shall continue
neglecting this quantitative difference between Ta and Tλ and will
continue describing the dynamic arrest transition as occurring at the
temperature Tλ.

On a different subject, let us now refer to the early and
sharp analysis by Sciortino et al.,33 who modeled the effective
long-range cluster–cluster interaction as the superposition of the
particle–particle Yukawa repulsion between the particles that form
two interacting clusters. This led to a renormalized cluster–cluster
Yukawa repulsion, capable of inducing dynamic arrest into a Wigner
glass of clusters, very much as the experimentally observed92,93

Wigner glasses formed by individual charged colloidal particles.
Along this line of thought, the long-range minimum and maxi-
mum of ga

(r; ϕ, T) in Fig. 5(b) should correspond to the first
minimum and maximum of the RDF of a repulsive Yukawa fluid.
However, since the repulsive Yukawa fluid is structurally equivalent
to the hard-sphere fluid,90,91 we can also pursue this idea using the
structural equivalence of the fluid of clusters with the hard sphere
liquid.

This is best explained in Fig. 6(b), which compares the NERDF
ga
(r; ϕ, T) (red solid line) corresponding to the shallowest quench

in Fig. 5(b) (final temperature T = 0.67, slightly below Tλ = 0.6733),
with the RDF g(r; ϕHS) (black solid line) of an effective hard-
sphere system that matches the height ga

2(ϕ, T) ≡ ga
(r2; ϕ, T) of the

long-range second maximum at r2 of ga
(r; ϕ, T). This comparison

determines the HS volume fraction ϕHS(ϕ, T) of an effective HS sys-
tem structurally equivalent to the cluster–cluster correlations in the
RDF ga

(r; ϕ, T) of the SALR system at the final state point (ϕ, T).
Figure 6(c) exhibits the value ϕeff ≡ ϕHS(ϕ = 0.15, T) thus computed,
as a function of the final temperature T.

As observed in Fig. 6(c), ϕeff can be determined even in the
equilibrium regime (T > Tλ) but only in the immediate neighbor-
hood of Tλ, where it has a sharp increase as T approaches Tλ from
above and where it reaches its maximum value (slightly larger than
0.5). For T < Tλ, we have that ϕeff decreases with decreasing T,
down to a value ϕeff ≲ 0.45 in the neighborhood of the glass–glass
transition temperature Tc. Thus, in the interval Tc < T < Tλ, the
quantitative value of ϕeff in Fig. 6(c) is clearly smaller than the
HS glass transition volume fraction ϕc ≈ 0.58 and, hence, cannot
account for the dynamic arrest condition. This means that the
cluster–cluster caging mechanism contributes to the arrest, but it is
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not sufficient. Hence, other mechanisms must come into play in this
regime.

Those additional mechanisms are also suggested by the results
for ga

(r; ϕ, T) in Fig. 5(b). There, we see that as T decreases suffi-
ciently, the true hard-sphere interactions manifest themselves in the
emergence of a local maximum in ga

(r; ϕ, T) at r ≈ 2, indicating
growing particle–particle (not cluster–cluster) hard-sphere correla-
tions. As the results in Fig. 5(b) indicate, these become the dominant
correlations for T below the glass–glass transition temperature Tc.

In summary, we can say that in contrast with the high-
density regime illustrated in Fig. 4, whose dynamic arrest was
strongly dominated by the excluded volume forces, in the
low-density–low-temperature regime, illustrated by the isochore
ϕ = 0.15, the dynamic arrest is the result of a much subtler and com-
plex interplay between the three components of the interaction: the
excluded volume, the long-range repulsion, and the shorter-ranged
attraction.

V. STRUCTURAL AGING: t -DEPENDENCE OF S (k ; t )
AND g(r ; t )

At this point, it is important to emphasize that the equilibrium
structure factor and phase diagram of Fig. 1, as well as the glass tran-
sition diagrams of Fig. 2 and the structural properties Sa

(k; ϕ, T)
and ga

(r; ϕ, T) just discussed, only refer to the infinitely long time
asymptotic limit, whose experimental observability is only possible,
in practice, if we wait longer than the longest relaxation times of the
system. This may be almost trivial when the system is able to relax
to equilibrium, which obviously makes the asymptotic equilibrium
scenario verifiable within practical waiting times (and hence, much
more familiar and representative of ordinary experience). Under
conditions of dynamical arrest, however, the longest relaxation times
may actually be too long (ideally, infinite), and the system might then
remain in non-equilibrium conditions within any practical observa-
tion time. This, in turn, may render the asymptotic glass transition
scenario impossible to verify in practice.

This practical impossibility could impede us to appreciate the
value of these asymptotic predictions. Such impediment, however,
can be removed by considering the full t-dependent solutions of the
NE-SCGLE Eqs. (2)–(6), which predict what one would measure at

the finite and practical waiting times t involved in any realistic exper-
iment or simulation. From this kinetic perspective, the fundamental
role of the ideal asymptotic scenario may be best appreciated, as we
now illustrate with the aging of the structural properties. Of course,
the full t-dependent solution also yields a wealth of information
regarding, for example, the dynamic and rheological properties, thus
providing a more powerful resource to understand the nature of the
glassy phases described by the asymptotic glass transition scenario.

To illustrate the structural aging predicted for the HSDY sys-
tem, Fig. 7(a) plots the snapshots of the NESF S(k; t) as a function
of k, for a sequence of representative values of the waiting time
t, after its instantaneous quench to the final temperature T = 0.67
along the isochore ϕ = 0.15. These results correspond to the shallow-
est quench illustrated in Fig. 5 and exhibit the gradual enhancement
of the correlations, starting from the chosen initial state S(k; t = 0;
ϕ, T) = Seq

(k; ϕ, T =∞) = SHS
(k; ϕ) (black solid line) and ending at

the asymptotic solution Sa
(k; ϕ, T) = S(k; t =∞; ϕ, T) (red dashed

line). They also illustrate the kinetic build-up of a rather fast, but
very modest, increase around the main peak at k = kmain ≈ 2π/σ of
S(k; t), along with the appearance of the small-k peak at k = kλ
≈ 1/σ, which exhibits, in contrast, a slower but far more spectacular
enhancement.

The main peak around kmain describes short-ranged correla-
tions, of the order of one HS diameter, and implies rather fast pro-
cesses of nearest neighbors moving close to each other in the initial
stage of cluster formation. The small-k peak at kλ describes, instead,
longer-ranged correlations, of the order of six HS diameters, and its
slower kinetics is associated with the build-up of cluster–cluster cor-
relations, ultimately leading to dynamic arrest. This striking kinetic
difference is visualized more precisely in the inset of the Fig. 7(a),
which compares Smain(t; ϕ, T) ≡ S(kmain, t; ϕ, T) with Sλ(t; ϕ, T)
≡ S(kλ, t; ϕ, T) for the same t sequence.

Let us stress again that the information provided by the full
t-dependent solutions of the NE-SCGLE Eqs. (2)–(6) is too abun-
dant to be reviewed in one individual report, even if we restricted
ourselves only to one specific property, such as to S(k, t; ϕ, T). The
main reason is that this function depends on its four arguments,
(k, t; ϕ, T), and it is not a simple task to scan this four-dimensional
parameter space. Still, partial views of this dependence are partic-
ularly instructive. For example, Fig. 6(a) plotted S(k, t; ϕ, T) as a

FIG. 7. (a) Sequence of snapshots describing the t-evolution of the NESF S(k; t) for a quench of the HSDY system, at ϕ = 0.15, from the same initial value as before
and toward the final temperature T = 0.67 [right below Tλ(ϕ = 0.15)]. The inset compares the time evolution of the two peaks Smain(t) (solid squares) and Sλ(t) (solid
circles). (b) T-dependence of Sλ for a sequence of values of waiting times t, as indicated, along with the asymptotic long time value Sλ(t →∞), also shown in Fig. 6(a).
(c) Corresponding sequence of snapshots for the NERDF g(r ; t) (ϕ, T), along with the asymptotic value g(r)a

(ϕ, T).
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function of T, keeping the other three arguments fixed, namely,
t =∞, k = kλ, and ϕ = 0.15. Since we now are analyzing the depen-
dence of S(k, t; ϕ, T) on the waiting time t, we may now extend such
analysis to finite t. This is done in Fig. 7(b), which plots Sλ(t; ϕ, T)
for fixed ϕ = 0.15, as a function of T for a sequence of values of the
waiting time t.

The main message of Fig. 7(b) is that the NE-SCGLE theory
not only predicts the results for Sλ(t =∞; ϕ, T) = Sa

λ(ϕ, T), which
one would measure in an idealized and impossible experiment. A
far more relevant practical prediction refers to what one should
measure at the finite waiting times involved in real specific experi-
ments or simulations. For instance, Fig. 7(b) illustrates the transient
buildup of the structural correlations at kλ, from which we learn that
although this is a slow process compared with the buildup of the cor-
relations at kmain, it only takes a finite time, t ≈ 103, for S(kλ, t; ϕ, T)
to saturate to its asymptotic value Sa

λ(t; ϕ, T) within the resolution
of the figure. Hence, the temptation to identify this process with
one of equilibration is enormous. Fortunately, the corresponding
analysis of dynamic properties, such as the α-relaxation time (not
discussed in this paper), allows us to clearly discriminate between
equilibration and arrest processes. Let us also mention a similarly
interesting transient process, whose description can be drawn from
Fig. 7(a). We refer to the fact that kλ becomes increasingly smaller
with t, thus describing the (time-dependent) cluster growth process.

The same structural information that we have just discussed
can also be cast in terms of the NERDF g(r, t; ϕ, T). Here, we shall
not make any effort to review the resulting scenario but only discuss
Fig. 7(c), which is the real space counterpart of Fig. 7(a). This figure
describes the aging of g(r, t; ϕ, T) (along ϕ = 0.15), whose most rel-
evant feature is the slow emergence of the long-ranged correlations
associated with cluster–cluster correlations, the main mechanism for
dynamic arrest in the shallow quench considered. From the aging of
g(r, t; ϕ, T), the non-equilibrium evolution of other relevant struc-
tural quantities (such as coordination numbers, effective cluster size,
and volume fraction) could be derived, each of which adds a dis-
tinct perspective to the general scenario of cluster formation and
dynamic arrest. As said above, however, in our present contribution,
we only aimed to pave the way to a more systematic discussion of
both structural and dynamical properties. Such discussion is left for
future work.

VI. DISCUSSION AND CONCLUSIONS
In summary, in this paper, we have carried out the first sys-

tematic application of the non-equilibrium self-consistent gener-
alized Langevin equation (NE-SCGLE) theory to the description
of dynamic arrest in liquids with competing short-ranged attrac-
tions and long-ranged repulsions (SALR). For this, we have analyzed
the non-equilibrium structural behavior in a model hard-sphere
plus double Yukawa (HSDY) fluid, quenched into its region of
thermodynamical instability.

For clarity, we have restricted ourselves to the study of the non-
equilibrium structural evolution of the model type III SALR after a
quench into the regions of thermodynamical instability. The most
fundamental quantity to understand such evolution is the thermo-
dynamic stability function E(k; n, T). When interpreted as a familiar
thermodynamic state function, it allows us to determine stability
conditions, unstable domains, and equilibrium structural properties.

Its appearance in the kinetic Eq. (2), however, implies that E(k; n, T)
bears a much deeper significance in determining more general non-
equilibrium properties, such as the time-evolving structure factor
S(k; t). In this context, E(k; n, T) no longer represents only an
equilibrium property. Instead, it becomes a fundamental input that
determines the kinetics of the time-dependent structural correla-
tions S(k; t) and g(r; t) (and of any other related property, such
as those describing the non-equilibrium dynamics). In this sense,
Eq. (2) can be viewed as an innovative proposal to extend the
Ornstein Zernike equation to non-equilibrium conditions.

Restricted to the very specific set of parameters chosen in
this study to represent the type III SALR interactions (z1 = 1,
z2 = 0.5 and A = 0.5), the physical scenario predicted by the NE-
SCGLE equations reveals a stunning and complex interplay between
the thermodynamic instability represented by the so-called λ line
T = Tλ(ϕ) and different underlying mechanisms for dynamical
arrest. This interplay materializes in three distinct types of non-
ergodic discontinuous (“type B”) transitions: (i) a “fluid to arrested-
cluster” (F–AC) transition, occurring for concentrations below a
threshold value ϕb = 0.365 and moderately low temperatures, which,
in practice, coincides with the λ line T = Tλ(ϕ); (ii) an “arrested-
clusters to glass” (AC–G) transition T = Tc(ϕ), occurring in the same
ϕ-regime but at lower temperatures; and (iii) a fluid to glass (F–G)
hard-sphere–like transition, observed for ϕ > ϕb, also denoted as
T = Tc(ϕ), to emphasize its smooth continuation inside the region
of thermodynamic instability, as the previous AC–G transition [see
Fig. 2(b)].

This asymptotic dynamic arrest transition scenario was greatly
enriched by the discussion of the non-equilibrium structural prop-
erties represented by S(k, t; ϕ, T) and g(r, t; ϕ, T). We first discussed
the asymptotic stationary limits Sa

(k; ϕ, T) and ga
(r; ϕ, T), and then

considered the non-equilibrium transient, provided by the full t-
dependent solutions of the NE-SCGLE equations [Eqs. (2)–(6)].
Besides describing in some detail the most salient features, we also
highlighted some seemingly innocuous observations. The most rele-
vant of them refers to the fact that at first glance and for the specific
HSDY model liquid considered in this work, the locus of the F–AC
transition coincides, “in practice”, with the λ line T = Tλ(ϕ). These
quotation marks needed a clarification, which was provided by the
zoom in the inset of Fig. 6(a): a closer inspection with the lens of the
NE-SCGLE theory revealed that, in fact, the F-AC transition occurs
not exactly at the λ temperature but also at a dynamic arrest temper-
ature T(F−AC) slightly higher, T(F−AC) (ϕ) > Tλ(ϕ). This immediately
implied that the F–AC transition preempts the λ-instability, thus
avoiding the divergence of the equilibrium structure factor expected
to occur at the λ line. As a consequence, when the model SALR sys-
tem is quenched right below Tλ, the dynamical arrest conditions may
prevent it from reaching full equilibrium conditions.

This observation suggests the impossibility to experimentally
observe the ordered inhomogeneous (“modulated”) equilibrium
phases predicted for the type III SALR systems in the region of
thermodynamic instability. As just explained, the development of
these phases is expected to become interrupted by non-equilibrium
dynamical arrest barriers. Unfortunately, to the best of our knowl-
edge, no experimental results exist that can confirm (or disregard)
these important predictions. Thus, our work could be a guide for
future experiments on type III SALR systems, carried out to test
the predicted non-equilibrium scenario just outlined. Similarly, the
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existing experimental data for type I and II SALR liquids surely will
serve as a motivation for further characterizations within the theo-
retical framework provided by the NE-SCGLE. We leave such tasks
for further work.

The present work was not aimed at scanning the parameter
space (z1, z2, A) of the HSDY potential, that is, to explore the phys-
ical scenario for type I and type II SALR systems. Instead, it was
meant to pave the way to develop further systematic investigations
with that and other purposes. An important pending issue refers to
the fact that within the NE-SCGLE description of arrested states, the
specific evolution of the structural correlations is intimately related,
via Eq. (2), to the aging of the dynamics, with the former being
represented in (2) by the mobility function b(t). Since the specific
kinetics of S(k; t) determines the non-equilibrium relaxation of
the dynamics, it is a pending task to characterize the aging of the
dynamics along each of the transitions outlined in this work and
to establish its connection to the non-equilibrium structural behav-
ior discussed here. From previous work on attractive systems (i.e.,
in the absence of the long-ranged Yukawa repulsion), we anticipate
an intricate dynamic landscape, originated in the complex interplay
between thermodynamic instabilities and dynamical arrest, lead-
ing to distinct relaxation laws for the dynamics approaching each
transition. All these aspects, however, shall be addressed in future
work.
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